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Fault Trees: Definition

structured representation of possible faults in a system
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Fault Trees: Definition

structured representation of possible faults in a system

@ [} E2=E3+K2=K2+S5-(S1+K1+R)
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Fault Trees: Definition

structured representation of possible faults in a system

El=E24T=T+K2+S-(51+KL+R)
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?

El =
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?

e1=|}
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?

£1 -+
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?

£1 = [l + I -+ .
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?

1 = I+ I+ I I

e minimal path set: which combination of component
non-failures prevents system failure?
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Fault Trees: Minimal Cut and Path Set

El=T+K2+5-(S1+K1L+R)

o fault tree represents boolean expression
@ two standard ways of rewriting these expressions

e minimal cut set: which combination of component failures
causes system failure?

1 = I+ I+ I I

e minimal path set: which combination of component
non-failures prevents system failure?

FUTLKELS KUK SU R
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Fault Trees: Probability of System Failure

if
@ component failure probabilities are known and small

@ components are independent
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Fault Trees: Probability of System Failure

if
@ component failure probabilities are known and small
@ components are independent

then, use minimal cut sets, and plug in component failure
probabilities (Vesley et al., 1981, VIII-14)

P(E1l) = P(T)+ P(K2) + P(S)P(S1) + P(S)P(K1) + P(S)P(R)
rare event approximation
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Fault Trees: Probability of System Failure

if
@ component upper failure probabilities are known

@ dependence between components is unknown
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Fault Trees: Probability of System Failure

if
@ component upper failure probabilities are known

@ dependence between components is unknown
then, we can still write (Hoeffding, 1940; Walley, 1991, §2.7.4(d))

P(E1) < P(T) + P(K2) + P(S-S1)+ P(S-K1) + P(S- R)

and
P(A-B) <min{P(A),P(B)}
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Fault Trees: Probability of System Failure

if
@ component upper failure probabilities are known

@ dependence between components is unknown
then, we can still write (Hoeffding, 1940; Walley, 1991, §2.7.4(d))

P(E1) < P(T) + P(K2) + P(S-S1)+ P(S-K1) + P(S- R)

and
P(A-B) <min{P(A),P(B)}

If we have joint data about two components, can we do
better for the bound on P(A- B)?
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Copulas: Definition

density
c(u, v)

AR
QP Durham

University

Matthias C. M. Troffaes & Frank Coolen Dependency Learning



Definition
Copulas Dependency Model
Examples

Copulas: Definition

density
c(u, v)

@ bivariate cumulative distribution C(u, v) on unit square
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Copulas: Dependency Model

Theorem (Sklar's Theorem (1959))

For any continuous bivariate cumulative distribution H(x,y) on the
real plane with marginal cumulative distributions F(x) and G(y),
there is a copula C(u,v) such that

H(x,y) = C(F(x), G(y))
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Copulas: Example — Product Copula

Combines
@ any marginals
into

@ independent joint.

AR
QP Durham

University

Matthias C. M. Troffaes & Frank Coolen Dependency Learning



Definition
Copulas Dependency Model
Examples

Copulas: Example — Product Copula

Combines
@ any marginals
into

@ independent joint.

C(u,v) =uv
density c(u,v) =1
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Copulas: Example — Gaussian Copula

Combines
@ Gaussian marginals
into

@ bivariate Gaussian joint with given correlation.
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Copulas Dependency Model
Examples

Copulas: Example — Gaussian Copula

Combines
@ Gaussian marginals
into

@ bivariate Gaussian joint with given correlation.

2 2 2
density ¢,(®(x), ®(y)) X”pxy)

1
= ————exp
2m\/1 — p2 < 2(1 - p?)

(-1<p<l)
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Copulas: Example — Farlie-Gumbel-Morgenstern (FGM)

Polynomial perturbation of the product copula.
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Copulas: Example — Farlie-Gumbel-Morgenstern (FGM)

Polynomial perturbation of the product copula.

Co(u,v) = uv(1+0(1 — u)(1 - v))
density cp(u,v) =1+ 6(1 —2u)(1 —2v)

(~1<6<1)
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Copulas: Example — Others

Many more copulas are studied in the literature!
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Copulas: Relevance for Fault Trees

If we have joint data about two components, can we do
better for the bound on P(A- B)?

AR
QP Durham

University

Matthias C. M. Troffaes & Frank Coolen Dependency Learning



Definition
Copulas Dependency Model
Examples

Copulas: Relevance for Fault Trees

If we have joint data about two components, can we do
better for the bound on P(A- B)?

Typical situation:
e A=X<xand B=Y <y
e marginals F(x) and G(y) well known
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Examples

Copulas: Relevance for Fault Trees

If we have joint data about two components, can we do
better for the bound on P(A- B)?

Typical situation:
e A=X<xand B=Y <y
e marginals F(x) and G(y) well known

so to know
P(A-B) = H(x,y) = C(F(x), G(y)) = C(P(A), P(B))
it suffices to know the copula C(u, v) for the joint H(x, y)!
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Conjugate Analysis
Examples
Learning Inverse Wishart

Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn
about C(u,v)?
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Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn
about C(u,v)?

If we have a parametric family of copulas

{cal(u,v): a}
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Conjugate Analysis
Examples
Learning Inverse Wishart

Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn
about C(u,v)?

If we have a parametric family of copulas
{cal(u,v): a}

with corresponding likelihood for data d= (x1,¥1), -+ (Xn, ¥n)

o) = [ calFOa), G F(x)e «Hca 1), (1))
i=1
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Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn
about C(u,v)?

If we have a parametric family of copulas
{cal(u,v): a}

with corresponding likelihood for data d= (x1,¥1), -+ (Xn, ¥n)

Hca I }/l)) YI X Hca I _yl))

can we then find a family of conjugate priors on « ? g
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Learning Copulas: Conjugate for FGM Copula

n n

h(dlp) o« [J(1 +6(1 = 2F ()1 - 26(y))) = [[(@ + Ouivi)

i=1 i=1

(with uj =1 — 2F(x;) and v; = 1 — 2G(y;))
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Examples
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Learning Copulas: Conjugate for FGM Copula

n n

h(dlp) o« [J(1 +6(1 = 2F ()1 - 26(y))) = [[(@ + Ouivi)

i=1 i=1

(with uj =1 —2F(x;) and v; = 1 — 2G(y;)) has conjugate priors

p(Olv,a1,...,a,) H(l + ayh)
k=1
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Conjugate Analysis
Examples
Learning Inverse Wishart

Learning Copulas: Conjugate for FGM Copula

n n

h(dlp) o« [J(1 +6(1 = 2F ()1 - 26(y))) = [[(@ + Ouivi)

i=1 i=1

(with uj =1 —2F(x;) and v; = 1 — 2G(y;)) has conjugate priors

p(Olv,a1,...,a,) H(l + ayh)
k=1

with updating rule

v—v—+n ax — ag for k <wv
ayri=uvifor1 <i<n
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Conjugate Analysis
Examples

Learning Inverse Wishart

stuck!
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Conjugate Analysis

Examples
Learning Inverse Wishart

stuck!

Challenges:
@ models for sets of polynomial distributions on [—1,1]?

@ reduce an infinite dimensional parameter set?
e lower bound on variance?

AR
P Durham

University

Matthias C. M. Troffaes & Frank Coolen Dependency Learning
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Learning Inverse Wishart

Learning Copulas: Conjugate for Gaussian Copula

S X+ =20, x,-y,-)

H(d(o) o | (—
p? 2(1 - p?)
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Learning Copulas: Conjugate for Gaussian Copula

. 1 2NN 2 ooNn
h(d‘p) O 7 €Xp (_lel Xi+ ZI:]. Yi pz::l X’y’)

S 2(1 - )

has possible class of conjugate priors p(p|v, a, 3):

p(plv, a, B) oc (1= p?) /2 exp (_a——”zp)
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Conjugate Analysis
Examples
Learning Inverse Wishart

Learning Copulas: Conjugate for Gaussian Copula

. 1 2NN 2 ooNn
h(d‘p) O 7 €Xp (_lel Xi+ ZI:]. Yi pz::l X’y’)

S 2(1 - )

has possible class of conjugate priors p(p|v, a, 3):

p(plv, a, B) oc (1= p?) /2 exp (_a——”zp)

with updating rule

n n
vovtn a—aty X+y ¥
i=1 i=1
n
p— B+ g XiYi -
=i gl
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Examples
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Learning Copulas: Conjugate for Gaussian Copula

(o) o —exn = R DV RY ek IO W )
Vi 2(1 - p?)
has possible class of conjugate priors p(p|v, a, 3):

a—20p

p(plv, o, B) x (1 — p?) /% exp (— =2 ) = Troffaes distribution?

with updating rule

n n
vovtn a—aty X+y ¥
i=1 i=1
n
p— B+ g XiYi -
=i gl
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Learning Inverse Wishart

stuck!
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Conjugate Analysis
Examples

Learning Inverse Wishart

stuck!

Challenges:

@ study this unknown distribution
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Conjugate Analysis
Examples
Learning Inverse Wishart

Side Track: Conjugate for Gaussian Bivariate

(known mean, unknown covariance)
hdls z 10 _ U§< pPOXTY
CaR LI CHES A o)
has as conjugate prior the inverse-Wishart distribution
Y~ Wiy, W)

with updating rule

2
Vv [ X
Do XiYi Dim Vi

v—v+n
2
A
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Conjugate Analysis
Examples
Learning Inverse Wishart

Side Track: Conjugate for Gaussian Bivariate

Expectation for ¥, after reparametrisation

E(Z|lv+3,v5)=S5
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Conjugate Analysis
Examples
Learning Inverse Wishart

Side Track: Conjugate for Gaussian Bivariate

Expectation for ¥, after reparametrisation

E(Z|lv+3,v5)=S5

prior near-ignorance about correlation?

{ Wt +3,0S5g0yp) : —1<p< 1}

with

S 0'§< POXOTY
OX,0Y,0

2
POXOY Oy m
WDurham

Matthias C. M. Troffaes & Frank Coolen Dependency Learning



Conjugate Analysis
Examples
Learning Inverse Wishart

Side Track: Conjugate for Gaussian Bivariate

Posterior expectation turns out to be

E(Z|d, v+ 3,S0x.0y.0) = S

Ty 0
with
2 n 2 2 n 2
N L SV B N LDV =Y
2 vV+n ke vV+n

oXOy (Z?:l % + pl/)
ooy (n+v)

/
p =
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Conjugate Analysis
Examples
Learning Inverse Wishart

Side Track: Conjugate for Gaussian Bivariate

Imprecision?

n XiyYi n XiYi
XY (Zi:l UXIUIY V) XY (Zi:l O'XIO',Y v V)

)

e e (0 ) o4 (0 )

or, if cx = oy = 1 and sample variance agrees with prior variance

7] = Yo Xiyi—V Yl Xiyi+ v
= n+v ’ n+v
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Conjugate Analysis
Examples

Learning Inverse Wishart

not stuck! :-)
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Conjugate Analysis
Examples

Learning Inverse Wishart

not stuck! :-)

Challenges:
@ non-Gaussian marginals?

@ other families of copulas?
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Conclusion

@ bivariate Gaussian: joint data can be incorporated into the
model quite easily, even accounting for prior ignorance
@ Bayesian learning about dependencies via copulas is
non-trivial: major challenges!
e conjugate priors are easily found, but. ..

e ways to reduce dimensionality? (imprecise probability has an
advantage here!)

e new distributions arise, begging to be studied

@ also updating the (precise) marginals in the model can make
the mathematics easier



Conclusion

@ bivariate Gaussian: joint data can be incorporated into the
model quite easily, even accounting for prior ignorance

@ Bayesian learning about dependencies via copulas is
non-trivial: major challenges!

e conjugate priors are easily found, but. ..

e ways to reduce dimensionality? (imprecise probability has an
advantage here!)

e new distributions arise, begging to be studied

@ also updating the (precise) marginals in the model can make
the mathematics easier

Thanks for your attention!

questions? comments? discussion?
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