Dependency Learning

Matthias C. M. Troffaes \& Frank Coolen
Department of Mathematical Sciences
Durham University
9 September 2009

Outline

(1) Fault Trees

- Definition
- Minimal Cut Set
- Probability
(2) Copulas
- Definition
- Dependency Model
- Examples
(3) Learning
- Conjugate Analysis
- Examples
- Inverse Wishart

Outline

(1) Fault Trees

- Definition
- Minimal Cut Set
- Probability
(2) Copulas
- Definition
- Dependency Model
- Examples
(3) Learning
- Conjugate Analysis
- Examples
- Inverse Wishart

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Definition

structured representation of possible faults in a system

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=
$$

University

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T
$$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2
$$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2+S \cdot S 1
$$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2+S \cdot S 1+S \cdot K 1
$$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2+S \cdot S 1+S \cdot K 1+S \cdot R
$$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2+S \cdot S_{1}+S \cdot K 1+S \cdot R
$$

- minimal path set: which combination of component non-failures prevents system failure?
$E 1^{\prime}=$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2+S \cdot S_{1}+S \cdot K 1+S \cdot R
$$

- minimal path set: which combination of component non-failures prevents system failure?

$$
E 1^{\prime}=T^{\prime} \cdot K 2^{\prime} \cdot S^{\prime}
$$

Fault Trees: Minimal Cut and Path Set

$$
E 1=T+K 2+S \cdot(S 1+K 1+R)
$$

- fault tree represents boolean expression
- two standard ways of rewriting these expressions
- minimal cut set: which combination of component failures causes system failure?

$$
E 1=T+K 2+S \cdot S_{1}+S \cdot K 1+S \cdot R
$$

- minimal path set: which combination of component non-failures prevents system failure?

$$
E 1^{\prime}=T^{\prime} \cdot K 2^{\prime} \cdot S^{\prime}+T^{\prime} \cdot K 1^{\prime} \cdot K 2^{\prime} \cdot S 1^{\prime} \cdot R^{\prime}
$$

Fault Trees

Definition

Fault Trees: Probability of System Failure

if

- component failure probabilities are known and small
- components are independent
nham

Fault Trees: Probability of System Failure

if

- component failure probabilities are known and small
- components are independent then, use minimal cut sets, and plug in component failure probabilities (Vesley et al., 1981, VIII-14)
$P(E 1) \approx P(T)+P(K 2)+P(S) P(S 1)+P(S) P(K 1)+P(S) P(R)$
rare event approximation

Fault Trees

Fault Trees: Probability of System Failure

if

- component upper failure probabilities are known
- dependence between components is unknown

Fault Trees: Probability of System Failure

if

- component upper failure probabilities are known
- dependence between components is unknown then, we can still write (Hoeffding, 1940; Walley, 1991, §2.7.4(d))

$$
\bar{P}(E 1) \leq \bar{P}(T)+\bar{P}(K 2)+\bar{P}(S \cdot S 1)+\bar{P}(S \cdot K 1)+\bar{P}(S \cdot R)
$$

and

$$
\bar{P}(A \cdot B) \leq \min \{\bar{P}(A), \bar{P}(B)\}
$$

Fault Trees: Probability of System Failure

if

- component upper failure probabilities are known
- dependence between components is unknown then, we can still write (Hoeffding, 1940; Walley, 1991, §2.7.4(d))

$$
\bar{P}(E 1) \leq \bar{P}(T)+\bar{P}(K 2)+\bar{P}(S \cdot S 1)+\bar{P}(S \cdot K 1)+\bar{P}(S \cdot R)
$$

and

$$
\bar{P}(A \cdot B) \leq \min \{\bar{P}(A), \bar{P}(B)\}
$$

If we have joint data about two components, can we do better for the bound on $\bar{P}(A \cdot B)$?

Outline

(1) Fault Trees

- Definition
- Minimal Cut Set
- Probability
(2) Copulas
- Definition
- Dependency Model
- Examples
(3) Learning
- Conjugate Analysis
- Examples
- Inverse Wishart

Copulas: Definition

Copulas: Definition

- bivariate cumulative distribution $C(u, v)$ on unit square
- uniform marginals

Copulas: Dependency Model

Theorem (Sklar's Theorem (1959))

For any continuous bivariate cumulative distribution $H(x, y)$ on the real plane with marginal cumulative distributions $F(x)$ and $G(y)$, there is a copula $C(u, v)$ such that

$$
H(x, y)=C(F(x), G(y))
$$

University

Copulas: Example - Product Copula

Combines

- any marginals
into
- independent joint.

Copulas: Example — Product Copula

Combines

- any marginals
into
- independent joint.

$$
\begin{aligned}
C(u, v) & =u v \\
\text { density } c(u, v) & =1
\end{aligned}
$$

Copulas: Example — Gaussian Copula

Combines

- Gaussian marginals
into
- bivariate Gaussian joint with given correlation.

Copulas: Example - Gaussian Copula

Combines

- Gaussian marginals
into
- bivariate Gaussian joint with given correlation.

$$
\text { density } c_{\rho}(\Phi(x), \Phi(y))=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right)
$$

$(-1<\rho<1)$

Copulas: Example - Farlie-Gumbel-Morgenstern (FGM)

Polynomial perturbation of the product copula.

Copulas: Example - Farlie-Gumbel-Morgenstern (FGM)

Polynomial perturbation of the product copula.

$$
\begin{aligned}
C_{\theta}(u, v) & =u v(1+\theta(1-u)(1-v)) \\
\text { density } c_{\theta}(u, v) & =1+\theta(1-2 u)(1-2 v)
\end{aligned}
$$

$(-1 \leq \theta \leq 1)$

Copulas: Example - Others

Many more copulas are studied in the literature!

Durham

Copulas: Relevance for Fault Trees

If we have joint data about two components, can we do better for the bound on $\bar{P}(A \cdot B)$?

Copulas: Relevance for Fault Trees

If we have joint data about two components, can we do better for the bound on $\bar{P}(A \cdot B)$?

Typical situation:

- $A=X \leq x$ and $B=Y \leq y$
- marginals $F(x)$ and $G(y)$ well known

Copulas: Relevance for Fault Trees

If we have joint data about two components, can we do better for the bound on $\bar{P}(A \cdot B)$?

Typical situation:

- $A=X \leq x$ and $B=Y \leq y$
- marginals $F(x)$ and $G(y)$ well known
so to know

$$
P(A \cdot B)=H(x, y)=C(F(x), G(y))=C(P(A), P(B))
$$

it suffices to know the copula $C(u, v)$ for the joint $H(x, y)$!

Outline

(1) Fault Trees

- Definition
- Minimal Cut Set
- Probability
(2) Copulas
- Definition
- Dependency Model
- Examples
(3) Learning
- Conjugate Analysis
- Examples
- Inverse Wishart

Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn about $C(u, v)$?

Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn about $C(u, v)$?

If we have a parametric family of copulas

$$
\left\{c_{\alpha}(u, v): \alpha\right\}
$$

Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn about $C(u, v)$?

If we have a parametric family of copulas

$$
\left\{c_{\alpha}(u, v): \alpha\right\}
$$

with corresponding likelihood for data $\vec{d}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$

$$
h(\vec{d} \mid \alpha)=\prod_{i=1}^{n} c_{\alpha}\left(F\left(x_{i}\right), G\left(y_{i}\right)\right) f\left(x_{i}\right) g\left(y_{i}\right) \propto \prod_{i=1}^{n} c_{\alpha}\left(F\left(x_{i}\right), G\left(y_{i}\right)\right)
$$

Learning Copulas: Bayesian Approach

If we have joint data about two components, can we learn about $C(u, v)$?

If we have a parametric family of copulas

$$
\left\{c_{\alpha}(u, v): \alpha\right\}
$$

with corresponding likelihood for data $\vec{d}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$

$$
h(\vec{d} \mid \alpha)=\prod_{i=1}^{n} c_{\alpha}\left(F\left(x_{i}\right), G\left(y_{i}\right)\right) f\left(x_{i}\right) g\left(y_{i}\right) \propto \prod_{i=1}^{n} c_{\alpha}\left(F\left(x_{i}\right), G\left(y_{i}\right)\right)
$$

can we then find a family of conjugate priors on α ?

Learning Copulas: Conjugate for FGM Copula

$$
h(\vec{d} \mid \rho) \propto \prod_{i=1}^{n}\left(1+\theta\left(1-2 F\left(x_{i}\right)\right)\left(1-2 G\left(y_{i}\right)\right)\right)=\prod_{i=1}^{n}\left(1+\theta u_{i} v_{i}\right)
$$

(with $u_{i}=1-2 F\left(x_{i}\right)$ and $v_{i}=1-2 G\left(y_{i}\right)$)

Learning Copulas: Conjugate for FGM Copula

$$
h(\vec{d} \mid \rho) \propto \prod_{i=1}^{n}\left(1+\theta\left(1-2 F\left(x_{i}\right)\right)\left(1-2 G\left(y_{i}\right)\right)\right)=\prod_{i=1}^{n}\left(1+\theta u_{i} v_{i}\right)
$$

(with $u_{i}=1-2 F\left(x_{i}\right)$ and $v_{i}=1-2 G\left(y_{i}\right)$) has conjugate priors

$$
p\left(\theta \mid \nu, a_{1}, \ldots, a_{\nu}\right) \propto \prod_{k=1}^{\nu}\left(1+a_{k} \theta\right)
$$

Learning Copulas: Conjugate for FGM Copula

$$
h(\vec{d} \mid \rho) \propto \prod_{i=1}^{n}\left(1+\theta\left(1-2 F\left(x_{i}\right)\right)\left(1-2 G\left(y_{i}\right)\right)\right)=\prod_{i=1}^{n}\left(1+\theta u_{i} v_{i}\right)
$$

(with $u_{i}=1-2 F\left(x_{i}\right)$ and $v_{i}=1-2 G\left(y_{i}\right)$) has conjugate priors

$$
p\left(\theta \mid \nu, a_{1}, \ldots, a_{\nu}\right) \propto \prod_{k=1}^{\nu}\left(1+a_{k} \theta\right)
$$

with updating rule

$$
\begin{aligned}
& \nu \rightarrow \nu+n \quad a_{k} \rightarrow a_{k} \text { for } k \leq \nu \\
& a_{\nu+i}=u_{i} v_{i} \text { for } 1 \leq i \leq n
\end{aligned}
$$

stuck!

stuck!

Challenges:

- models for sets of polynomial distributions on $[-1,1]$?
- reduce an infinite dimensional parameter set?
- lower bound on variance?

Learning Copulas: Conjugate for Gaussian Copula

$$
h(\vec{d} \mid \rho) \propto \frac{1}{{\sqrt{1-\rho^{2}}}^{n}} \exp \left(-\frac{\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2}-2 \rho \sum_{i=1}^{n} x_{i} y_{i}}{2\left(1-\rho^{2}\right)}\right)
$$

Learning Copulas: Conjugate for Gaussian Copula

$$
h(\vec{d} \mid \rho) \propto \frac{1}{{\sqrt{1-\rho^{2}}}^{n}} \exp \left(-\frac{\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2}-2 \rho \sum_{i=1}^{n} x_{i} y_{i}}{2\left(1-\rho^{2}\right)}\right)
$$

has possible class of conjugate priors $p(\rho \mid \nu, \alpha, \beta)$:
$p(\rho \mid \nu, \alpha, \beta) \propto\left(1-\rho^{2}\right)^{-\nu / 2} \exp \left(-\frac{\alpha-2 \beta \rho}{1-\rho^{2}}\right)$

Learning Copulas: Conjugate for Gaussian Copula

$$
h(\vec{d} \mid \rho) \propto \frac{1}{{\sqrt{1-\rho^{2}}}^{n}} \exp \left(-\frac{\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2}-2 \rho \sum_{i=1}^{n} x_{i} y_{i}}{2\left(1-\rho^{2}\right)}\right)
$$

has possible class of conjugate priors $p(\rho \mid \nu, \alpha, \beta)$:
$p(\rho \mid \nu, \alpha, \beta) \propto\left(1-\rho^{2}\right)^{-\nu / 2} \exp \left(-\frac{\alpha-2 \beta \rho}{1-\rho^{2}}\right)$
with updating rule

$$
\begin{aligned}
\nu \rightarrow \nu+n \quad \alpha & \rightarrow \alpha+\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2} \\
\beta & \rightarrow \beta+\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

Learning Copulas: Conjugate for Gaussian Copula

$$
h(\vec{d} \mid \rho) \propto \frac{1}{{\sqrt{1-\rho^{2}}}^{n}} \exp \left(-\frac{\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2}-2 \rho \sum_{i=1}^{n} x_{i} y_{i}}{2\left(1-\rho^{2}\right)}\right)
$$

has possible class of conjugate priors $p(\rho \mid \nu, \alpha, \beta)$:
$p(\rho \mid \nu, \alpha, \beta) \propto\left(1-\rho^{2}\right)^{-\nu / 2} \exp \left(-\frac{\alpha-2 \beta \rho}{1-\rho^{2}}\right)=$ Troffaes distribution?
with updating rule

$$
\begin{aligned}
\nu \rightarrow \nu+n \quad \alpha & \rightarrow \alpha+\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2} \\
\beta & \rightarrow \beta+\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

stuck!

stuck!

Challenges:

- study this unknown distribution

Durham

Side Track: Conjugate for Gaussian Bivariate

(known mean, unknown covariance)

$$
h(\vec{d} \mid \Sigma) \propto \prod_{i=1}^{n} N\left(\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \Sigma=\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right]\right)
$$

has as conjugate prior the inverse-Wishart distribution

$$
\Sigma \sim W^{-1}(\nu, \Psi)
$$

with updating rule

$$
\nu \rightarrow \nu+n \quad \Psi \rightarrow \Psi+\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} y_{i} \\
\sum_{i=1}^{n} x_{i} y_{i} & \sum_{i=1}^{n} y_{i}^{2}
\end{array}\right]
$$

Side Track: Conjugate for Gaussian Bivariate

Expectation for Σ, after reparametrisation

$$
E(\Sigma \mid \nu+3, \nu S)=S
$$

Durham

Side Track: Conjugate for Gaussian Bivariate

Expectation for Σ, after reparametrisation

$$
E(\Sigma \mid \nu+3, \nu S)=S
$$

prior near-ignorance about correlation?

$$
\left\{W^{-1}\left(\nu+3, \nu S_{\sigma_{X}, \sigma_{Y}, \rho}\right):-1<\rho<1\right\}
$$

with

$$
S_{\sigma_{X}, \sigma_{Y}, \rho}=\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right]
$$

Side Track: Conjugate for Gaussian Bivariate

Posterior expectation turns out to be

$$
E\left(\Sigma \mid \vec{d}, \nu+3, \nu S_{\sigma_{X}, \sigma_{Y}, \rho}\right)=S_{\sigma_{X}^{\prime}, \sigma_{Y}^{\prime}, \rho^{\prime}}
$$

with

$$
\begin{gathered}
\sigma_{X}^{\prime}=\sqrt{\frac{\nu \sigma_{X}^{2}+\sum_{i=1}^{n} x_{i}^{2}}{\nu+n}} \quad \sigma_{Y}^{\prime}=\sqrt{\frac{\nu \sigma_{Y}^{2}+\sum_{i=1}^{n} y_{i}^{2}}{\nu+n}} \\
\rho^{\prime}=\frac{\sigma_{X} \sigma_{Y}\left(\sum_{i=1}^{n} \frac{x_{i} y_{i}}{\sigma_{X} \sigma_{Y}}+\rho \nu\right)}{\sigma_{X}^{\prime} \sigma_{Y}^{\prime}(n+\nu)}
\end{gathered}
$$

University

Side Track: Conjugate for Gaussian Bivariate

Imprecision?

$$
\left[\underline{\rho^{\prime}}, \overline{\rho^{\prime}}\right]=\left[\frac{\sigma_{X} \sigma_{Y}\left(\sum_{i=1}^{n} \frac{x_{i} y_{i}}{\sigma_{X} \sigma_{Y}}-\nu\right)}{\sigma_{X}^{\prime} \sigma_{Y}^{\prime}(n+\nu)}, \frac{\sigma_{X} \sigma_{Y}\left(\sum_{i=1}^{n} \frac{x_{i} y_{i}}{\sigma_{X} \sigma_{Y}}+\nu\right)}{\sigma_{X}^{\prime} \sigma_{Y}^{\prime}(n+\nu)}\right]
$$

or, if $\sigma_{X}=\sigma_{Y}=1$ and sample variance agrees with prior variance

$$
\left[\underline{\rho^{\prime}}, \overline{\rho^{\prime}}\right]=\left[\frac{\sum_{i=1}^{n} x_{i} y_{i}-\nu}{n+\nu}, \frac{\sum_{i=1}^{n} x_{i} y_{i}+\nu}{n+\nu}\right]
$$

not stuck! :-)

Dumnam

not stuck! :-)

Challenges:

- non-Gaussian marginals?
- other families of copulas? University

Conclusion

- bivariate Gaussian: joint data can be incorporated into the model quite easily, even accounting for prior ignorance
- Bayesian learning about dependencies via copulas is non-trivial: major challenges!
- conjugate priors are easily found, but...
- ways to reduce dimensionality? (imprecise probability has an advantage here!)
- new distributions arise, begging to be studied
- also updating the (precise) marginals in the model can make the mathematics easier

Conclusion

- bivariate Gaussian: joint data can be incorporated into the model quite easily, even accounting for prior ignorance
- Bayesian learning about dependencies via copulas is non-trivial: major challenges!
- conjugate priors are easily found, but...
- ways to reduce dimensionality? (imprecise probability has an advantage here!)
- new distributions arise, begging to be studied
- also updating the (precise) marginals in the model can make the mathematics easier

Thanks for your attention!
questions? comments? discussion?

