Introduction	Background 0000	The example ০০০০০০০	Results oo	Conclusions

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

University of São Paulo, Brasil; Durham Univeristy, UK

WPMSIIP - September 2009

Solving act-state independent imprecise decision processes

Introduction	Background	The example	Results	Conclusions

- Authors
- Objectives

- 3 The example
 - Problem formulation
 - Implementation

4 Results

(A) (E) (A) (E)

Introduction	Background	The example	Results 00	Conclusions

From the University of São Paulo

Ricardo Shirota Filho

- Ph.D. student at the University of São Paulo
- Supervised by Prof. Fabio G. Cozman
- Currently visiting Durham University
 - Markov Decision Processes (sequential decision making)
 - Artificial Intelligence Planning
 - Imprecise probabilities
 - Algorithms

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Introduction ○●○○	Background 0000	The example	Results oo	Conclusions
From Du	rham Univor	sity		

From Durham University

Matthias C. M. Troffaes

- Lecturer at Durham University
 - Foundations of statistics
 - Sequential decision making
 - Imprecise probabilities
 - Reliability, fault trees

Nathan Huntley

- Ph.D. student at Durham University
- Supervised by Matthias Troffaes
 - Sequential decision making
 - Imprecise probabilities

Introduction	Background	The example	Results oo	Conclusions

After a few discussions...

A common topic of interest

Investigate conditions for optimality in sequential decision making with imprecision under fairly general assumptions

- Ricardo: Markov Decision Processes, applications
- Matthias and Nathan: decision trees, arbitrary choice functions, gambles

Solving act-state independent imprecise decision processes

Introduction	Background	The example	Results oo	Conclusions
The menu				

In this presentation

- General description and current results
- A simple illustrative example

Later...

Matthias: Locality property and implications for foundations

Nathan: Implications for backward induction

cesses Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロト ヘワト ヘビト ヘビト

Solving act-state independent imprecise decision processes

Introduction	Background	The example	Results oo	Conclusions
The menu				

In this presentation

- General description and current results
- A simple illustrative example

Later...

- Matthias: Locality property and implications for foundations
- Nathan: Implications for backward induction

Solving act-state independent imprecise decision processes

Sequential decision making

Solving act-state independent imprecise decision processes

ヘロア 人間 アメヨア 人口 ア Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ъ

Sequential decision making

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロン ヘアン ヘビン ヘビン

э

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロン 不良 とくほう 不良 とうほ

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

imiting condition

• Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

imiting condition

• Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

imiting condition

• Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

_imiting condition

• Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

・ロト ・ 理 ト ・ ヨ ト ・

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

Limiting condition

• Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロト 不得 とくほ とくほ とうほ

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

Limiting condition Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロン 人間 とくほど くほとう

Introduction	Background o●oo	The example	Results oo	Conclusions
Assumpt	ions			

- No probabilities are assumed and rewards do not need to be expressed in terms of utility, instead we use arbitrary choice functions
- Rewards can depend on full state history
- State and action spaces can depend on the stage

However, not everything is perfect...

Limiting condition

• Act-state independence could not be avoided

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

・ロト ・ 理 ト ・ ヨ ト ・

Introduction	Background ooeo	The example	Results oo	Conclusions 00
Our main	n result			

Locality property

$$X + \bigoplus_{s_k} E_{s_k} Y(s_k) \in \operatorname{opt} \left(\mathcal{X} + \bigoplus_{s_k} E_{s_k} \mathcal{Y}(s_k) \middle| h_{k-1} \right) \iff$$
$$X \in \operatorname{opt}(\mathcal{X}|h_{k-1}) \text{ and } Y(s_k) \in \operatorname{opt}(\mathcal{Y}(s_k)|h_{k-1}s_k) \text{ for all } s_k.$$

It can be shown that

The locality property is necessary and sufficient for normal form solutions to reduce to a sequence of single stage normal form solutions.

Solving act-state independent imprecise decision processes

Introduction	Background ooeo	The example	Results oo	Conclusions 00
Our main	n result			

Locality property

$$X + \bigoplus_{s_k} E_{s_k} Y(s_k) \in \operatorname{opt} \left(\mathcal{X} + \bigoplus_{s_k} E_{s_k} \mathcal{Y}(s_k) \Big| h_{k-1} \right) \iff$$

 $X \in \operatorname{opt}(\mathcal{X}|h_{k-1}) \text{ and } Y(s_k) \in \operatorname{opt}(\mathcal{Y}(s_k)|h_{k-1}s_k) \text{ for all } s_k.$

It can be shown that

The locality property is necessary and sufficient for normal form solutions to reduce to a sequence of single stage normal form solutions.

Solving act-state independent imprecise decision processes

Introduction	Background ○○○●	The example	Results oo	Conclusions
Additiona	al results			

When considering:

- Lower previsions
- Rewards expressed in terms of utility

Maximality and E-admissibility

- Strictly positive lower probabilities
- Marginal extension

Solving act-state independent imprecise decision processes Rica

Introduction	Background ○○○●	The example	Results oo	Conclusions
Additiona	al results			

When considering:

- Lower previsions
- Rewards expressed in terms of utility

Maximality and E-admissibility

- Strictly positive lower probabilities
- Marginal extension

Solving act-state independent imprecise decision processes

Introduction	Background	The example ●oooooo	Results oo	Conclusions 00
The simp	le coin probl	em		

An agent bets sequentially on a coin.

He recieves one utile on correct prediction and loses one otherwise.

The agent's objective is to perform optimally, thus maximizing the expected profit over the sequence of coin tosses.

Solving act-state independent imprecise decision processes Ricardo S

Introduction	Background	The example	Results	Conclusions		
	0000	●000000	oo	00		
The simple coin problem						

An agent bets sequentially on a coin.

He recieves one utile on correct prediction and loses one otherwise.

The agent's objective is to perform optimally, thus maximizing the expected profit over the sequence of coin tosses.

Solving act-state independent imprecise decision processes

Introduction	Background	The example	Results	Conclusions		
	0000	●000000	oo	00		
The simple coin problem						

An agent bets sequentially on a coin.

He recieves one utile on correct prediction and loses one otherwise.

The agent's objective is to perform optimally, thus maximizing the expected profit over the sequence of coin tosses.

Introduction	Background	The example o●ooooo	Results oo	Conclusions
The simp	ole coin probl	em		

- The bias of the coin is not known (Bayesian agent is no longer an obvious choice)
- The toss is not affected by the decision (act-state independence)

And to make things more interesting...

• Learning is considered (full state history is available)

Solving act-state independent imprecise decision processes

Introduction	Background	The example	Results	Conclusions
0000		o●ooooo	oo	00
The sime	ole coin probl	em		

- The bias of the coin is not known (Bayesian agent is no longer an obvious choice)
- The toss is not affected by the decision (act-state independence)

And to make things more interesting...

• Learning is considered (full state history is available)

Solving act-state independent imprecise decision processes F

Introduction	Background	The example	Results	Conclusions
	0000	o●ooooo	oo	00
The simp	ole coin probl	em		

- The bias of the coin is not known (Bayesian agent is no longer an obvious choice)
- The toss is not affected by the decision (act-state independence)

And to make things more interesting...

• Learning is considered (full state history is available)

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロト 不得 とくほ とくほ とうほ

Introduction	Background	The example	Results	Conclusions
0000		o●ooooo	oo	00
The simp	ole coin probl	em		

- The bias of the coin is not known (Bayesian agent is no longer an obvious choice)
- The toss is not affected by the decision (act-state independence)

And to make things more interesting...

• Learning is considered (full state history is available)

イロン 不良 とくほう 不良 とうほ

Introduction	Background 0000	The example oo●oooo	Results oo	Conclusions
Formulation	on			

States (possible outcomes)

- heads
- tails
- Decisions (possible bets)
 - heads
 - tails
- Rewards (expressed in utility)
 - if bet = outcome, receive 1
 - if bet \neq outcome, pay 1
- Transition probabilities (IDM)
 - Vacuous prior
 - Updated using observed transition

Solving act-state independent imprecise decision processes

Introduction	Background	The example oo●oooo	Results oo	Conclusions
Formulatio	า			

States (possible outcomes)

- heads
- tails
- Occisions (possible bets)
 - heads
 - tails
 - Rewards (expressed in utility)
 - if bet = outcome, receive 1
 - if bet \neq outcome, pay 1
 - Transition probabilities (IDM)
 - Vacuous prior
 - Updated using observed transition

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロン ヘアン ヘビン ヘビン

Correculat	lon			
0000	0000	000000	00	00
Introduction	Background	The example	Results	Conclusions

Formulation

States (possible outcomes)

- heads
- tails
- ② Decisions (possible bets)
 - heads
 - tails
- Rewards (expressed in utility)
 - if bet = outcome, receive 1
 - if bet \neq outcome, pay 1
 - Transition probabilities (IDM)
 - Vacuous prior
 - Updated using observed transition

Solving act-state independent imprecise decision processes

Introduction	Background	The example oo●oooo	Results oo	Conclusions
Formulatio	n			

- States (possible outcomes)
 - heads
 - tails
- Occisions (possible bets)
 - heads
 - tails
- Rewards (expressed in utility)
 - if bet = outcome, receive 1
 - if bet \neq outcome, pay 1
- Transition probabilities (IDM)
 - Vacuous prior
 - Updated using observed transition

Introduction	Background	The example ○○○●○○○	Results oo	Conclusions 00
Formulation				

Notice that this example is similar to an MDPIP, because

- We assume that our uncertainty is expressed by a credal set
- Our rewards are expressed in terms of utilities

However, it is not an MDPIP because

• The Markov assumption does not hold (probabilities depend on the full state history)

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロン 不良 とくほう 不良 とうほ

Introduction	Background	The example ○○○●○○○	Results oo	Conclusions 00
Formulation				

Notice that this example is similar to an MDPIP, because

- We assume that our uncertainty is expressed by a credal set
- Our rewards are expressed in terms of utilities

However, it is *not* an MDPIP because

• The Markov assumption does not hold (probabilities depend on the full state history)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction	Background	The example oooo●oo	Results oo	Conclusions

The Imprecise Dirichlet Model

Predictive lower prevision

$$\underline{E}(X|h_k) = \sum_{i} \left(\frac{n_i}{N+s} X(i) \right) + \frac{s}{N+s} \inf_{t \in \Delta} \left(\sum_{i} t_i X(i) \right)$$

Optimality criteria:

- Γ -maximin ($\underline{E}(X) > \underline{E}(Y)$)
- Interval dominance $(\underline{E}(X) > \overline{E}(Y))$
- Maximality $(\underline{E}(X Y) > 0)$
- E-admissibility

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロン 不良 とくほう 不良 とうほ

Introduction Backgro	und The example	Results oo	Conclusions

The Imprecise Dirichlet Model

Predictive lower prevision

$$\underline{E}(X|h_k) = \sum_{i} \left(\frac{n_i}{N+s} X(i) \right) + \frac{s}{N+s} \inf_{t \in \Delta} \left(\sum_{i} t_i X(i) \right)$$

Optimality criteria:

- Γ -maximin ($\underline{E}(X) > \underline{E}(Y)$)
- Interval dominance $(\underline{E}(X) > \overline{E}(Y))$
- Maximality ($\underline{E}(X Y) > 0$)
- E-admissibility

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロン 不良 とくほう 不良 とうほ

Implementation				
0000	0000	0000000	00	00
Introduction	Background	The example	Results	Conclusions

Implementation

・ロト ・回ト ・ヨト ・ヨト Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

э

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●○	Results oo	Conclusions
Impleme	ntation			

Python

・ロト ・回ト ・ヨト ・ヨト Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

э

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●○	Results oo	Conclusions
Impleme	ntation			

- Python
- Bayesian agent
 - Precise probabilities (distribution)
 - Uniform prior
- IDM agent
 - Vacuous prior
 - Maximality
 - E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●○	Results oo	Conclusions
Impleme	ntation			

- Python
- Bayesian agent
 - Precise probabilities (distribution)
 - Uniform prior
- "IDM" agent
 - Vacuous prior
 - Maximality
 - E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●	Results oo	Conclusions
Impleme	ntation			

- 10 coin tosses
- 10,000 experiments
- Average gain

In particular

- Bayesian = Γ-maximin
- Interval dominance = maximality = E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●	Results oo	Conclusions
Impleme	ntation			

- 10 coin tosses
- 10,000 experiments
- Average gain

In particular

- Bayesian = Γ-maximin
- Interval dominance = maximality = E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●	Results oo	Conclusions
Impleme	ntation			

- 10 coin tosses
- 10,000 experiments
- Average gain

In particular

- Bayesian = Γ-maximin
- Interval dominance = maximality = E-admissibility

Solving act-state independent imprecise decision processes Rica

Introduction	Background	The example ○○○○○●	Results oo	Conclusions
Implemer	ntation			

- 10 coin tosses
- 10,000 experiments
- Average gain

In particular

- Bayesian = Γ-maximin
- Interval dominance = maximality = E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●	Results oo	Conclusions
Implemer	ntation			

- 10 coin tosses
- 10,000 experiments
- Average gain

In particular

- Bayesian = Γ-maximin
- Interval dominance = maximality = E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background	The example ○○○○○●	Results oo	Conclusions
Implemer	ntation			

- 10 coin tosses
- 10,000 experiments
- Average gain

In particular

- Bayesian = Γ-maximin
- Interval dominance = maximality = E-admissibility

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

・ロト ・ 理 ト ・ ヨ ト ・

э

10000 Introduction Background The example Hesuits Conclusions 0000 0000 0000000	Devesion	Novimal	ogent		
I a second a	Introduction 0000	Background	The example	Results ●○	Conclusions

Solving act-state independent imprecise decision processes

・ロ・・ (日・・ 日・・ 日) Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

э

Introduction	Background	The example	Results ○●	Conclusions 00
D				

Bayesian vs Maximal agent with no-bet option

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ъ

A D > < P</p>

Introduction	Background 0000	The example	Results oo	Conclusions ●○			
Conclusi	Conclusions						

- For best performance, forget about imprecise probabilities and simply be a happy Bayesian
- Por robustness, avoid Γ-maximin (or Bayesian agent) and instead adopt maximality or E-admissibility

Solving act-state independent imprecise decision processes

Introduction	Background 0000	The example	Results oo	Conclusions ●○
Conclusio	ons			

- For best performance, forget about imprecise probabilities and simply be a happy Bayesian
- For robustness, avoid Γ-maximin (or Bayesian agent) and instead adopt maximality or E-admissibility

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロン 不良 とくほう 不良 とうほ

Introduction	Background	The example	Results oo	Conclusions ○●
Future st	eps			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- B Real applications?

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロア 人間 アメヨア 人口 ア

Introduction	Background 0000	The example	Results oo	Conclusions ○●
Future ste	eps			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- B Real applications?

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロア 人間 アメヨア 人口 ア

Introduction	Background	The example	Results oo	Conclusions ○●
Future st	eps			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- Beal applications?

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

ヘロン ヘアン ヘビン ヘビン

Introduction	Background 0000	The example	Results oo	Conclusions ○●
Future st	eps			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- In the second second

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

・ロト ・ 理 ト ・ ヨ ト ・

Introduction	Background	The example	Results oo	Conclusions ○●
Future st	eps			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- Real applications?

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロト 不得 とくほ とくほ とうほ

Introduction	Background	The example	Results oo	Conclusions ○●
Future st	eps			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- Real applications?
- Ultimate goal
 - Act-state dependence

Questions? Comments?

Thank you for your attention!

Solving act-state independent imprecise decision processes

Ricardo Shirota Filho, Matthias C. M. Troffaes, Nathan Huntley

イロト 不得 とくほ とくほ とうほ

Introduction	Background	The example	Results oo	Conclusions ○●
Future step	DS			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- Real applications?

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

イロン 不良 とくほう 不良 とうほ

Introduction	Background	The example	Results oo	Conclusions ○●
Future step	DS			

- Γ-maximin and interval dominance?
- More complex problems (e.g. Peter Walley's bag of marbles)...
- Real applications?

Ultimate goal

Act-state dependence

Questions? Comments?

Thank you for your attention!

イロン 不良 とくほう 不良 とうほ