Probabilistic set-membership estimation

Luc Jaulin

www.ensieta.fr/jaulin/
ENSIETA, Brest

Munich, September 15, 2009

Second Workshop on Principles and Methods of Statistical Inference with Interval Probability

Bounded-error estimation

$$
\mathbf{y}=\boldsymbol{\psi}(\mathbf{p})+\mathbf{e}
$$

where

- $\mathbf{e} \in \mathbb{E} \subset \mathbb{R}^{m}$ is the error vector,
- $\mathbf{y} \in \mathbb{R}^{m}$ is the collected data vector,
- $\mathbf{p} \in \mathbb{R}^{n}$ is the parameter vector to be estimated.

Or equivalently

$$
\mathbf{e}=\mathbf{f}(\mathbf{y}, \mathbf{p})=\mathbf{f}_{\mathbf{y}}(\mathbf{p})
$$

where

$$
\mathrm{f}_{\mathrm{y}}(\mathrm{p})=\mathrm{y}-\psi(\mathrm{p}) .
$$

The posterior feasible set for the parameters is

$$
\widehat{\mathbb{P}}=\mathrm{f}_{\mathrm{y}}^{-1}(\mathbb{E}) \cap \mathbb{P} .
$$

About interval methods

Interval methods provide guaranteed results only if some assumptions (bounds on the errors, constraints, model, ...) are satisfied.

In practice we are not able to give 100% reliable assumptions, but we can associate some probabilities on them.

Show setdemo

For parameter estimation, if that the assumptions are satisfied with a probability π, the solution set encloses the true value for the parameter vector with a probability $>\pi$.

In a Bayesian approach, prior pdf $\Pi_{\mathbf{e}}, \Pi_{\mathbf{p}}^{\text {prior }}$ are known for \mathbf{e}, \mathbf{p}.

The Bayes rule gives us the posterior pdf for \mathbf{p}

$$
\Pi_{\mathrm{p}}^{\text {post }}(\mathbf{p})=\frac{\Pi_{\mathrm{e}}\left(\mathbf{f}_{\mathbf{y}}(\mathbf{p})\right) \cdot \Pi_{\mathrm{p}}^{\text {prior }}(\mathbf{p})}{\int_{\mathbf{p} \in \mathbb{R}^{n}} \Pi_{\mathrm{e}}\left(\mathbf{f}_{\mathbf{y}}(\mathbf{p})\right) \cdot \Pi_{\mathrm{p}}^{\text {prior }}(\mathbf{p}) \cdot d \mathbf{p}}
$$

Probabilistic-set approach. We decompose the error space into two subsets: \mathbb{E} on which we bet \mathbf{e} will belong and $\overline{\mathbb{E}}$.

We set

$$
\pi=\operatorname{Pr}(\mathbf{e} \in \mathbb{E})
$$

The event $\mathbf{e} \in \overline{\mathbb{E}}$ is considered as rare, i.e.,

$$
\pi \simeq 1
$$

Once \mathbf{y} is collected, we compute

$$
\widehat{\mathbb{P}}=\mathrm{f}_{\mathrm{y}}^{-1}(\mathbb{E}) \cap \mathbb{P}
$$

If now $\widehat{\mathbb{P}} \neq \emptyset$, we conclude that $\mathbf{p} \in \widehat{\mathbb{P}}$ with a probability of π.

If $\widehat{\mathbb{P}}=\emptyset$, than we conclude the rare event $\mathbf{e} \in \overline{\mathbb{E}}$ occurred.

Example 1. The model is described by $y=p^{2}+e$, i.e.,

$$
e=y-p^{2}=f_{y}(p)
$$

Assume that $\Pi_{e}: \mathcal{N}(0,1)$. If $\mathbb{E}=[-6,6]$ then,

$$
\operatorname{Pr}(e \in \overline{\mathbb{E}})=-\frac{1}{\sqrt{2 \pi}} \int_{-6}^{6} \exp \left(-\frac{e^{2}}{2}\right) d e \simeq 1.97 \times 10^{-9}
$$

We now collect $y=10$. We have

$$
\begin{aligned}
\widehat{\mathbb{P}} & =f_{y}^{-1}(\mathbb{E}) \cap \mathbb{P}=f_{y}^{-1}([-6,6]) \cap[-\infty, \infty] \\
& =\sqrt{10-[-6,6]}=\sqrt{[4,16]}=[-4,-2] \cup[2,4] .
\end{aligned}
$$

with a prior probability of $1-1.97 \times 10^{-9}$.

Let us apply the Bayesian approach, with $\Pi_{p}^{\text {prior }}: \mathcal{N}(3,1)$. The posterior pdf for p is

$$
\begin{aligned}
\Pi_{p}^{\text {post }}(p) & =\frac{\Pi_{e}\left(f_{y}(p)\right) \cdot \Pi_{p}^{\text {prior }}(p)}{\int_{p \in \mathbb{R}} \Pi_{e}\left(f_{y}(p)\right) \cdot \Pi_{p}^{\text {prior }}(p) d p} \\
& =\frac{e^{-\frac{\left(10-p^{2}\right)^{2}}{2}} \cdot e^{-\frac{(p-3)^{2}}{2}}}{\int_{-\infty}^{\infty} e^{-\frac{\left(10-p^{2}\right)^{2}}{2}} \cdot e^{-\frac{(p-3)^{2}}{2}} \cdot d p} \\
& \simeq 2.57 e^{-\frac{p^{4}-19 p^{2}-6 p+109}{2}}
\end{aligned}
$$

Example 2. Now $y=-10$. Since

$$
\widehat{\mathbb{P}}=f_{y}^{-1}(\mathbb{E})=\emptyset
$$

the probabilistic-set approach concludes to an inconsistency. The Bayesian approach gives

$$
\Pi_{p}^{\text {post }}(p) \simeq 6.9305 \times 10^{23} \cdot e^{-\frac{p^{4}-39 p^{2}-6 p+409}{2}}
$$

which corresponds to a precise posterior pdf for p around $p=4.45$.

In practice, the huge factor $\left(6.9305 \times 10^{23}\right)$ is interpreted as an inconsistency.

Example 3. Assume that

$$
\begin{array}{llll}
\operatorname{Pr}\left(e_{1} \leq-1\right) & =0.2, & \operatorname{Pr}\left(e_{2} \leq-2\right) & =0.2, \\
\operatorname{Pr}\left(e_{1} \in[-1,1]\right) & =0.4, & \operatorname{Pr}\left(e_{2} \in[-2,3]\right) & =0.6, \\
\operatorname{Pr}\left(e_{1} \in[1,2]\right) & =0.2, & \operatorname{Pr}\left(e_{2} \geq 3\right) & =0.2, \\
\operatorname{Pr}\left(e_{1} \geq 2\right) & =0.2 & &
\end{array}
$$

and that e_{1} and e_{2} are independent.

The joint pdf for $\left(e_{1}, e_{2}\right)$ is

$\left.\left[e_{2}\right] \backslash e_{1}\right]$	$[-\infty,-1]$	$[-1,1]$	$[1,2]$	$[2, \infty]$
$[3, \infty]$	0.04	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 4}$	0.04
$[-2,3]$	$\mathbf{0 . 1 2}$	$\mathbf{0 . 2 4}$	$\mathbf{0 . 1 2}$	$\mathbf{0 . 1 2}$
$[-\infty,-2]$	0.04	$\mathbf{0 . 0 8}$	0.04	0.04

Thus
$\operatorname{Pr}(\mathrm{e} \in \mathbb{E})=0.08+0.04+0.12+0.24+0.12+0.12+0.08=0.8$.
$\widehat{\mathbb{P}}=f_{\mathbf{y}}^{-1}(\mathbb{E})$ encloses \mathbf{p} with a prior probability of 0.8 .

2 Robust regression

Consider the error model

$$
\mathbf{e}=\mathbf{f}_{\mathbf{y}}(\mathbf{p})
$$

y_{i} is an inlier if $e_{i} \in\left[e_{i}\right]$ and an outlier otherwise. We assume that

$$
\forall i, \operatorname{Pr}\left(e_{i} \in\left[e_{i}\right]\right)=\pi
$$

and that all e_{i} 's are independent.

Equivalently,

$$
\left\{\begin{array}{cc}
f_{1}(\mathbf{y}, \mathbf{p}) \in\left[e_{1}\right] & \text { with a probability } \pi \\
\vdots & \vdots \\
f_{m}(\mathbf{y}, \mathbf{p}) \in\left[e_{m}\right] & \text { with a probability } \pi
\end{array}\right.
$$

The number k of inliers follows a binomial distribution

$$
\frac{m!}{k!(m-k)!} \pi^{k} \cdot(1-\pi)^{m-k}
$$

The probability of having strictly more than q outliers is thus

$$
\gamma(q, m, \pi) \stackrel{\text { def }}{=} \sum_{k=0}^{m-q-1} \frac{m!}{k!(m-k)!} \pi^{k} \cdot(1-\pi)^{m-k}
$$

Example. For instance, if $m=1000, q=900, \pi=0.2$, we get $\gamma(q, m, \pi)=7.04 \times 10^{-16}$. Thus having more than 900 outliers can be seen as a rare event.

Denote by \mathbb{E} the set of all $\mathbf{e} \in \mathbb{R}^{m}$ such that the number of outliers is smaller (or equal) than q.
$\widehat{\mathbb{P}}=\mathrm{f}_{\mathrm{y}}^{-1}(\mathbb{E})$ will contain the parameter vector with a prior probability of $1-\gamma(q, m, \pi)$.

Illustration the q-relaxed intersection

Demo of Jan Sliwka

3 Test case

Generation of data. $m=500$ data are generated as follows

$$
\begin{aligned}
& y_{i}=p_{1} \sin \left(p_{2} t_{i}\right)+e_{i}, \text { with a probability } 0.2 \\
& y_{i}=r_{1} \exp \left(r_{2} t_{i}\right)+e_{i}, \text { with a probability } 0.2 . \\
& y_{i}=n_{i}
\end{aligned}
$$

where $t_{i}=0.02 *(i+1), i \in\{1,500\}, e_{i}: \mathcal{U}([-0.1,0.1])$ and $n_{i}: \mathcal{N}(2,3)$.

We took $\mathbf{p}^{*}=(2,2)^{\top}$ and $\mathbf{r}^{*}=(4,-0.4)^{\top}$.

Estimation. We know that

$$
y_{i}=p_{1} \sin \left(p_{2} t_{i}\right)+e_{i}, \text { with a probability } 0.2 .
$$

and that we have no idea of what happen otherwise.

We want

$$
\operatorname{Pr}\left(\mathbf{p}^{*} \in \widehat{\mathbb{P}}\right) \geq 0.95
$$

Since $\gamma(414,500,0.2)=0.0468$ and $\gamma(413,500,0.2)=$ 0.12 , we should assume $q=414$ outliers.

4 State estimation

$$
\begin{cases}\mathbf{x}(k+1) & =\mathbf{f}_{k}(\mathbf{x}(k), \mathbf{n}(k)) \\ \mathbf{y}(k) & =\mathbf{g}_{k}(\mathbf{x}(k)),\end{cases}
$$

with $\mathbf{n}(k) \in \mathbb{N}(k)$ and $\mathbf{y}(k) \in \mathbb{Y}(k)$.

Without outliers

$$
\mathbb{X}(k+1)=\mathbf{f}_{k}\left(\mathbb{X}(k) \cap \mathbf{g}_{k}^{-1}(\mathbb{Y}(k)), \quad \mathbb{N}(k)\right) .
$$

Define

$$
\begin{cases}\mathbf{f}_{k: k}(\mathbb{X}) & \stackrel{\text { def }}{=} \mathbb{X} \\ \mathbf{f}_{k_{1}: k_{2}+1}(\mathbb{X}) & \stackrel{\text { def }}{=} \mathbf{f}_{k_{2}}\left(\mathbf{f}_{k_{1}: k_{2}}(\mathbb{X}), \mathbb{N}\left(k_{2}\right)\right), k_{1} \leq k_{2}\end{cases}
$$

The set $\mathbf{f}_{k_{1}: k_{2}}(\mathbb{X})$ represents the set of all $\mathbf{x}\left(k_{2}\right)$, consistent with $\mathbf{x}\left(k_{1}\right) \in \mathbb{X}$.

Consider the set state estimator

$$
\left\{\begin{aligned}
\mathbb{X}(k)= & \mathbf{f}_{0: k}(\mathbb{X}(0)) \quad \text { if } k<m, \text { (initialization step) } \\
\mathbb{X}(k)= & \mathbf{f}_{k-m: k}(\mathbb{X}(k-m)) \cap \\
& \bigcap_{i \in\{1, \ldots, m\}} \mathbf{f}_{k-i: k} \circ \mathbf{g}_{k-i}^{-1}(\mathbb{Y}(k-i)) \text { if } k \geq m
\end{aligned}\right.
$$

We assume that all errors are time independent.

If (i) within any time window of length m we have less than q outliers and that (ii) $\mathbb{X}(0)$ contains $\mathbf{x}(0)$, then $\mathbb{X}(k)$ encloses $\mathbf{x}(k)$.

What is the probability of this assumption?

Theorem. Consider the sequence of sets $\mathbb{X}(0), \mathbb{X}(1), \ldots$ built by the set observer. We have

$$
\operatorname{Pr}(\mathrm{x}(k) \in \mathbb{X}(k)) \geq \alpha * \operatorname{Pr}(\mathrm{x}(k-1) \in \mathbb{X}(k-1))
$$

where

$$
\alpha=\sqrt[m]{\sum_{i=m-q}^{m} \frac{m!\pi_{y}^{i} \cdot\left(1-\pi_{y}\right)^{m-i}}{i!(m-i)!}}
$$

with an equality if $\mathbb{N}(k)$ are singletons.

5 Application to localization

Sauc'isse robot inside a swimming pool

The robot evolution is described by

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{4} \cos x_{3} \\
\dot{x}_{2}=x_{4} \sin x_{3} \\
\dot{x}_{3}=u_{2}-u_{1} \\
\dot{x}_{4}=u_{1}+u_{2}-x_{4}
\end{array}\right.
$$

where x_{1}, x_{2} are the coordinates of the robot center, x_{3} is its orientation and x_{4} is its speed. The inputs u_{1} and u_{2} are the accelerations provided by the propellers.

The system can be discretized by $\mathbf{x}_{k+1}=\mathbf{f}_{k}\left(\mathbf{x}_{k}\right)$, where,

$$
\mathbf{f}_{k}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+\delta \cdot x_{4} \cdot \cos \left(x_{3}\right) \\
x_{2}+\delta \cdot x_{4} \cdot \sin \left(x_{3}\right) \\
x_{3}+\delta \cdot\left(u_{2}(k)-u_{1}(k)\right) \\
x_{4}+\delta \cdot\left(u_{1}(k)+u_{2}(k)-x_{4}\right)
\end{array}\right)
$$

Underwater robot moving inside a pool

Emission diagram at time $t=9 \mathrm{sec}$

$$
\frac{\pi 0}{20}
$$

$t(\mathrm{sec})$	$\operatorname{Pr}(\mathrm{x} \in \mathbb{X})$	Outliers
3.0	≥ 0.965	58
6.0	≥ 0.932	50
9.0	≥ 0.899	42
12.0	≥ 0.869	51
15.0	≥ 0.838	51
16.2	≥ 0.827	49

