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Definition
A gamble is an uncertain reward, i.e. @ mapping from the
possibility space 2 to the reward set R.

“probabilityless (horse-)lottery”

Definition

A choice function opt selects, for any set of gambles X and
event A, a subset of X':

0 # opt(X|A) C X

How to solve sequential decision problems
with a choice function?
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Decision Trees: Normal Form Decisions
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Decision Trees: Gambles
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Observation
Every normal form decision induces a gamble.




Introduction
[ee]e]e] Telele]

Decision Trees: Normal Form Solution

Definition
A normal form solution of a decision tree is a set of these
normal form decisions.
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Definition
A normal form solution of a decision tree is a set of these
normal form decisions.
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Normal Form Solution Induced By opt

Problem
@ The set of normal form gambles grows very quickly with
tree size
@ Imprecise probability choice functions with the most
attractive properties are also the most difficult to compute
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Backward Induction

@ |dea of backward induction: use the solutions of subtrees
to eliminate many options in the full tree

@ For factual choice functions, this works straightforwardly
@ For counterfactual total preorders, there is usually no
useful backward induction method

@ For choice functions corresponding to partial orders
(maximality, interval dominance) or more complicated
choice functions (E-admissibility) there are several
possibilities...
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Seidenfeld 1988

@ This is an extensive form solution

@ Solve the subtrees at the ultimate decision nodes (only one
decision, no sequential aspect)

@ If a set of options remains at an ultimate decision node, we

do not know what we will choose at this node. Assume
maximum imprecision about this choice

@ Then the choice at the next layer of decision nodes
becomes non-sequential in nature
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Figure: Variation of Hammond'’s example
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Kikuti et al 2005

Algorithm

@ Solve the subtrees at ultimate decision nodes
@ Move to the previous stage of decision nodes

@ Consider the normal form decisions at these nodes, but
only those involving normal form decisions found optimal at
the previous step

@ Find the optimal subset of these normal form decisions

@ At each decision node we end up with a set of optimal
normal form decisions

@ Proposed solution: at each decision node, allowed to
choose any decision involved in an optimal normal form
decision at this node
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Huntley and Troffaes

@ We can use the algorithm in a different way

@ At the initial decision node, we have a set of “optimal”
normal form decisions

@ Let’'s use them as our normal form solution
@ This will eliminate the previous strange behaviour

Even better!

@ For some choice function, this “optimal” set is nothing other
than the canonical normal form solution




Backward Induction
00e0000

Necessary and Sufficient Conditions

Backward Conditioning Property

If AX =AY and {X, Y} C X, then
X € opt(X|A) < Y € opt(X|A) (subject to some

technicalities)
A)
Backward Mixture Property
opt ({Ax +AZ: X e X}|B> C Aopt(X|AN B) @ AZ

| A

Path Independence

n
opt ( U X;
i=1

A) = opt (Lnj opt(Xj|A)

i=1

] o
| A
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How useful is this?

@ The choice function is applied at every stage

@ If few options are deleted the process takes even longer
than solving directly

@ Note: Result still holds if choice function is only applied
from time to time

@ There are also possibilities to save time, especially if the
structure of the tree is suitable
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Approximation Theorem

@ Suppose that:
e opt; C opt,
e opt, satisfies the conditions
e opt, does not
@ We can apply the algorithm using opt, and then apply opt;
at the end

@ Could be useful if opt, is much easier to compute but still
eliminates most non-optimal gambles

@ Note: can apply opt, after opt, at any stage of the
algorithm and nothing changes
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Special Structures

@ With particular structures, backward induction may work
under weaker conditions, and be easier to perform.

@ Markov Decision Process with act-state independence
@ Use maximality or E-admissibility

° P() = P(P(|4))

@ Only need solve local problems at each stage

@ So: no need to ever compare too many gambles

@ This generalises to a larger class of decision problems
(need some symmetry, rewards at each stage depend on
last choice and state history but not decision history...)

@ For '-maximin: locality does not work but a form of
backward induction does (Satia and Lave)
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Relationship with Factuality

@ If opt is factual then backward induction works
@ If backward induction works then opt may not be factual

@ In fact, backward induction implies that local solutions are
supersets of the global solution

@ Interpretation: knowing counterfactual information refines
one’s decisions
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Conclusions

@ Backward induction can still be used for some
counterfactual choice functions

@ Several possible schemes available
@ So far, limited work to make these methods practical
@ Question: which approach is “better”?
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