Backward Induction for Sequential Decision Problems

Nathan Huntley Matthias C. M. Troffaes

Durham University

15th September 2009

Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Backward Induction

- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

Outline

Introduction

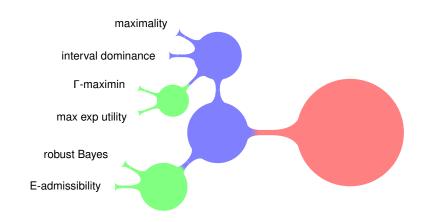
Problem Description

- Gambles and Choice Functions
- Decision Trees

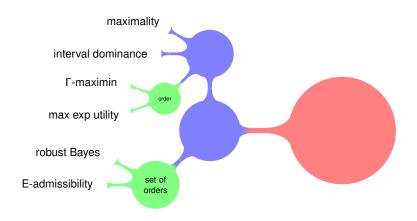
2 Backward Induction

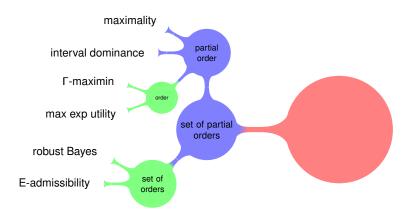
- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

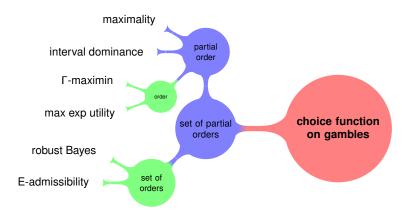
Introduction •••••••••



Introduction •••••••••







Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Backward Induction

- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space Ω to the reward set \mathcal{R} .

"probabilityless (horse-)lottery"

Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space Ω to the reward set \mathcal{R} .

"probabilityless (horse-)lottery"

Definition

A choice function opt selects, for any set of gambles \mathcal{X} and event A, a subset of \mathcal{X} :

 $\emptyset \neq \mathsf{opt}(\mathcal{X}|\textit{A}) \subseteq \mathcal{X}$

Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space Ω to the reward set \mathcal{R} .

"probabilityless (horse-)lottery"

Definition

A choice function opt selects, for any set of gambles \mathcal{X} and event A, a subset of \mathcal{X} :

 $\emptyset \neq \mathsf{opt}(\mathcal{X}|\textit{A}) \subseteq \mathcal{X}$

How to solve sequential decision problems with a choice function?

Outline

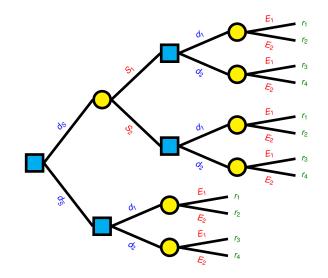
Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

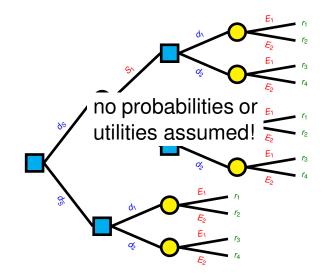
2 Backward Induction

- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

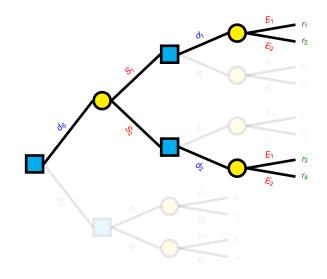
Decision Trees: Example



Decision Trees: Example



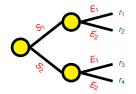
Decision Trees: Normal Form Decisions



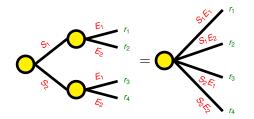
Introduction

Backward Induction

Decision Trees: Gambles

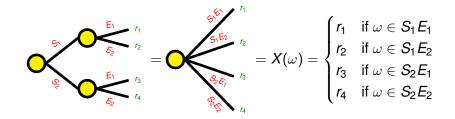


Decision Trees: Gambles



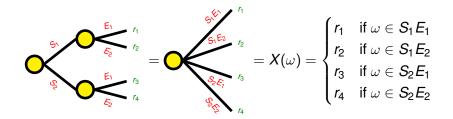
Introduction

Decision Trees: Gambles



Introduction

Decision Trees: Gambles



Observation

Every normal form decision induces a gamble.

Decision Trees: Normal Form Solution

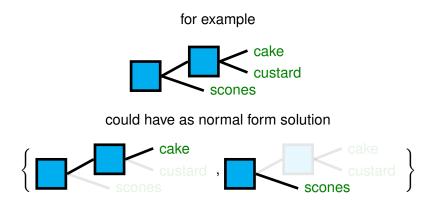
Definition

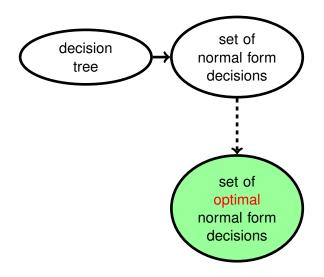
A normal form solution of a decision tree is a set of these normal form decisions.

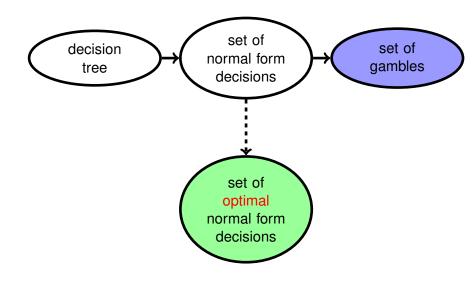
Decision Trees: Normal Form Solution

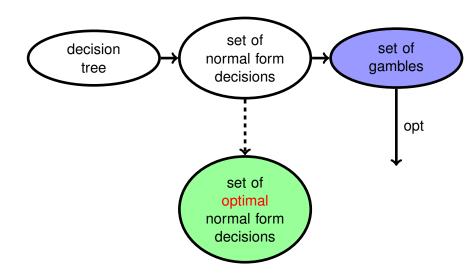
Definition

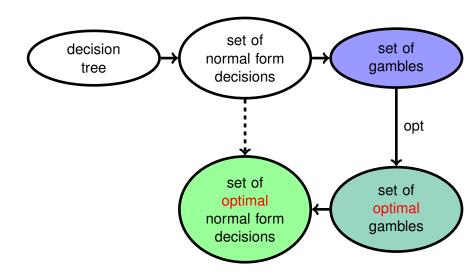
A normal form solution of a decision tree is a set of these normal form decisions.

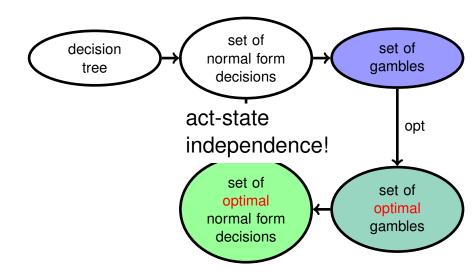










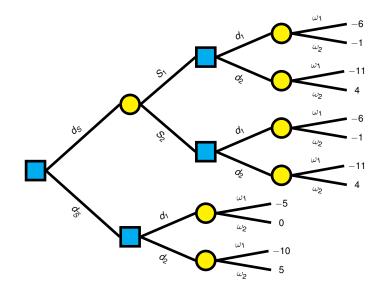


Normal Form Solution Induced By opt

Problem

- The set of normal form gambles grows very quickly with tree size
- Imprecise probability choice functions with the most attractive properties are also the most difficult to compute

Example



Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Backward Induction

- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

Backward Induction

- Idea of backward induction: use the solutions of subtrees to eliminate many options in the full tree
- For factual choice functions, this works straightforwardly
- For counterfactual total preorders, there is usually no useful backward induction method
- For choice functions corresponding to partial orders (maximality, interval dominance) or more complicated choice functions (E-admissibility) there are several possibilities...

Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Backward Induction

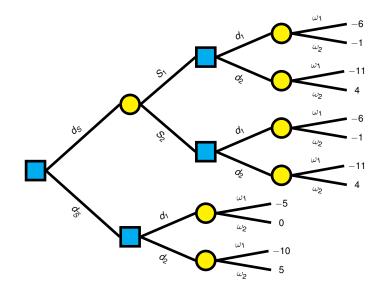
Seidenfeld

- Kikuti et al
- Huntley and Troffaes

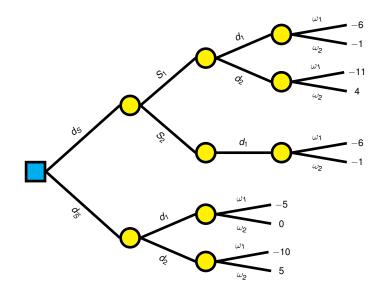
Seidenfeld 1988

- This is an extensive form solution
- Solve the subtrees at the ultimate decision nodes (only one decision, no sequential aspect)
- If a set of options remains at an ultimate decision node, we do not know what we will choose at this node. Assume maximum imprecision about this choice
- Then the choice at the next layer of decision nodes becomes non-sequential in nature

Example



Example



Problem?

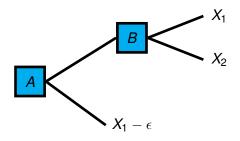


Figure: Variation of Hammond's example

Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Backward Induction

- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

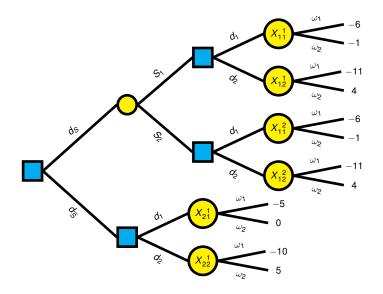
Kikuti et al 2005

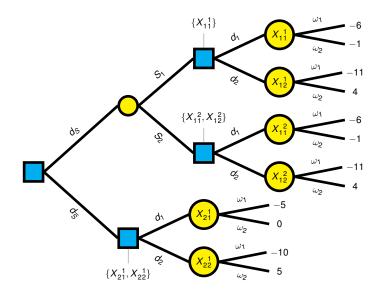
Algorithm

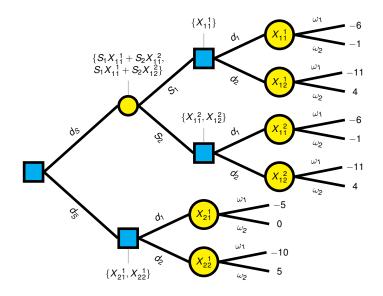
- Solve the subtrees at ultimate decision nodes
- Move to the previous stage of decision nodes
- Consider the normal form decisions at these nodes, but only those involving normal form decisions found optimal at the previous step
- Find the optimal subset of these normal form decisions

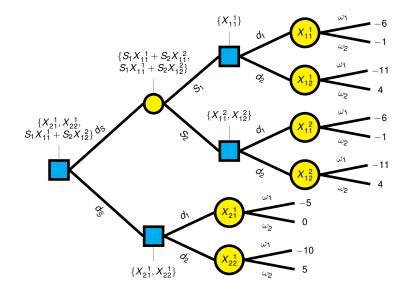
Solution

- At each decision node we end up with a set of optimal normal form decisions
- Proposed solution: at each decision node, allowed to choose any decision involved in an optimal normal form decision at this node

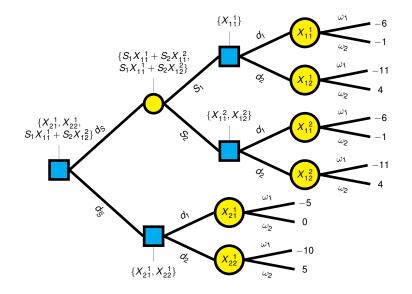








Problem?



Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Backward Induction

- Seidenfeld
- Kikuti et al
- Huntley and Troffaes

Huntley and Troffaes

- We can use the algorithm in a different way
- At the initial decision node, we have a set of "optimal" normal form decisions
- Let's use them as our normal form solution
- This will eliminate the previous strange behaviour

Even better!

• For some choice function, this "optimal" set is nothing other than the canonical normal form solution

Necessary and Sufficient Conditions

Backward Conditioning Property

If
$$AX = AY$$
 and $\{X, Y\} \subseteq \mathcal{X}$, then
 $X \in opt(\mathcal{X}|A) \iff Y \in opt(\mathcal{X}|A)$ (subject to some technicalities)

Path Independence

$$\operatorname{opt}\left(\bigcup_{i=1}^{n} \mathcal{X}_{i} \middle| A\right) = \operatorname{opt}\left(\bigcup_{i=1}^{n} \operatorname{opt}(\mathcal{X}_{i} | A) \middle| A\right)$$

Backward Mixture Property

$$\mathsf{opt}\left(\{AX + \overline{A}Z \colon X \in \mathcal{X}\}|B\right) \subseteq A \mathsf{opt}(\mathcal{X}|A \cap B) \oplus \overline{A}Z$$

How useful is this?

- The choice function is applied at every stage
- If few options are deleted the process takes even longer than solving directly
- Note: Result still holds if choice function is only applied from time to time
- There are also possibilities to save time, especially if the structure of the tree is suitable

Approximation Theorem

• Suppose that:

- $opt_1 \subseteq opt_2$
- opt₁ satisfies the conditions
- opt₂ does not
- We can apply the algorithm using opt₂ and then apply opt₁ at the end
- Could be useful if opt₂ is much easier to compute but still eliminates most non-optimal gambles
- Note: can apply opt₁ after opt₂ at any stage of the algorithm and nothing changes

Special Structures

• With particular structures, backward induction may work under weaker conditions, and be easier to perform.

- Markov Decision Process with act-state independence
- Use maximality or E-admissibility
- $\underline{P}(\cdot) = \underline{P}(\underline{P}(\cdot|\mathcal{A}))$
- Only need solve local problems at each stage
- So: no need to ever compare too many gambles
- This generalises to a larger class of decision problems (need some symmetry, rewards at each stage depend on last choice and state history but not decision history...)
- For Γ-maximin: locality does not work but a form of backward induction does (Satia and Lave)

Relationship with Factuality

- If opt is factual then backward induction works
- If backward induction works then opt may not be factual
- In fact, backward induction implies that local solutions are supersets of the global solution
- Interpretation: knowing counterfactual information refines one's decisions

Conclusions

- Backward induction can still be used for some counterfactual choice functions
- Several possible schemes available
- So far, limited work to make these methods practical
- Question: which approach is "better"?

- Nathan Huntley and Matthias Troffaes. Normal form backward induction for decision trees under arbitrary choice functions. Submitted.
- D. Kikuti, F. Cozman, and C.P. de Campos.

Partially ordered preferences in decision trees: Computing strategies with imprecision in probabilities.

In R. Brafman and U. Junker, editors, *IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling*, pages 118–123, 2005.

T. Seidenfeld.

Decision theory without 'independence' or without 'ordering': What is the difference? *Economics and Philosophy*, 4:267–290, 1988.