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Gambles and Choice Functions

Definition
A gamble is an uncertain reward, i.e. a mapping from the
possibility space Ω to the reward set R.

“probabilityless (horse-)lottery”

Definition
A choice function opt selects, for any set of gambles X and
event A, a subset of X :

∅ 6= opt(X|A) ⊆ X

How to solve sequential decision problems
with a choice function?
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Normal Form Solution Induced By opt

Problem
The set of normal form gambles grows very quickly with
tree size
Imprecise probability choice functions with the most
attractive properties are also the most difficult to compute
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Backward Induction

Idea of backward induction: use the solutions of subtrees
to eliminate many options in the full tree
For factual choice functions, this works straightforwardly
For counterfactual total preorders, there is usually no
useful backward induction method
For choice functions corresponding to partial orders
(maximality, interval dominance) or more complicated
choice functions (E-admissibility) there are several
possibilities...
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Seidenfeld 1988

This is an extensive form solution
Solve the subtrees at the ultimate decision nodes (only one
decision, no sequential aspect)
If a set of options remains at an ultimate decision node, we
do not know what we will choose at this node. Assume
maximum imprecision about this choice
Then the choice at the next layer of decision nodes
becomes non-sequential in nature
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Problem?
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Figure: Variation of Hammond’s example
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Kikuti et al 2005

Algorithm

Solve the subtrees at ultimate decision nodes
Move to the previous stage of decision nodes
Consider the normal form decisions at these nodes, but
only those involving normal form decisions found optimal at
the previous step
Find the optimal subset of these normal form decisions

Solution
At each decision node we end up with a set of optimal
normal form decisions
Proposed solution: at each decision node, allowed to
choose any decision involved in an optimal normal form
decision at this node
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Huntley and Troffaes

We can use the algorithm in a different way
At the initial decision node, we have a set of “optimal”
normal form decisions
Let’s use them as our normal form solution
This will eliminate the previous strange behaviour

Even better!
For some choice function, this “optimal” set is nothing other
than the canonical normal form solution
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Necessary and Sufficient Conditions

Backward Conditioning Property

If AX = AY and {X ,Y} ⊆ X , then
X ∈ opt(X|A) ⇐⇒ Y ∈ opt(X|A) (subject to some
technicalities)

Path Independence

opt

(
n⋃

i=1

Xi

∣∣∣∣∣A
)

= opt

(
n⋃

i=1

opt(Xi |A)

∣∣∣∣∣A
)

Backward Mixture Property

opt
(
{AX + AZ : X ∈ X}|B

)
⊆ A opt(X|A ∩ B)⊕ AZ
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How useful is this?

The choice function is applied at every stage
If few options are deleted the process takes even longer
than solving directly
Note: Result still holds if choice function is only applied
from time to time
There are also possibilities to save time, especially if the
structure of the tree is suitable
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Approximation Theorem

Suppose that:
opt1 ⊆ opt2
opt1 satisfies the conditions
opt2 does not

We can apply the algorithm using opt2 and then apply opt1
at the end
Could be useful if opt2 is much easier to compute but still
eliminates most non-optimal gambles
Note: can apply opt1 after opt2 at any stage of the
algorithm and nothing changes
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Special Structures

With particular structures, backward induction may work
under weaker conditions, and be easier to perform.

Example
Markov Decision Process with act-state independence
Use maximality or E-admissibility
P(·) = P(P(·|A))

Only need solve local problems at each stage
So: no need to ever compare too many gambles
This generalises to a larger class of decision problems
(need some symmetry, rewards at each stage depend on
last choice and state history but not decision history...)
For Γ-maximin: locality does not work but a form of
backward induction does (Satia and Lave)
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Relationship with Factuality

If opt is factual then backward induction works
If backward induction works then opt may not be factual
In fact, backward induction implies that local solutions are
supersets of the global solution
Interpretation: knowing counterfactual information refines
one’s decisions
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Conclusions

Backward induction can still be used for some
counterfactual choice functions
Several possible schemes available
So far, limited work to make these methods practical
Question: which approach is “better”?
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