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The subjective Bayesian approach is based on a very simple collection of ideas.

You are uncertain about many things in the world.

You can quantify your uncertainties as probabilities, for the quantities you are
interested in, and conditional probabilities for observations you might make

given the things you are interested in.

When data arrives, Bayes theorem tells you how to move from your prior

probabilities to new conditional probabilities for the quantities of interest.

If you need to make decisions, then you may also specify a utility function,

given which your preferred decision is that which maximises expected utility

with respect to your conditional probability distribution.
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The Bayesian approach is hard for complicated problems because

(i) thinking about complicated problems is hard!
(ii) the Bayesian approach for such problems is exhausting!

(i) is unavoidable. How about (ii)?

The Bayes linear approach is concerned with problems in which we want to

combine prior judgments of uncertainty with observational data, and we use

EXPECTATION rather than probability as the primitive for expressing these
judgments (see de Finetti “Theory of Probability”, Wiley, 1974).

This distinction is of particular relevance in complex problems with too many

sources of information for us to be comfortable in making a meaningful full joint

prior probability specification of the type required for a BAYESIAN ANALYSIS.

Therefore, we seek methods of prior specification and analysis which do not

require this extreme level of detail.
Thus, the Bayes linear approach is similar in spirit to a full Bayes analysis, but

is based on a simpler approach to prior specification and analysis, and so

offers a practical methodology for analysing partially specified beliefs for large

problems.
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In the Bayes linear approach, we make direct prior specifications for that

collection of means, variances and covariances which we are both willing and
able to assess, and update these prior assessments by linear fitting.

Suppose that we have two collections of random quantities, namely vectors

B = (B1, ..., Br), D = (D0, D1, ..., Ds), where D0 = 1, and we intend to

observe D in order to improve our assessments of belief over B.

The adjusted or Bayes linear expectation for Bi given D is the linear
combination aT

i D minimising E((Bi − aT
i D)2) over choices of ai.

ED(B) = E(B) + Cov(B, D)(Var(D))−1(D − E(D))

The adjusted variance matrix for B given D, is

VarD(B) = Var(B − ED(B)) =
Var(B) − Cov(B, D)(Var(D))−1Cov(D, B)
More than you could want to know in

Bayes linear Statistics: Theory and Methods, 2007, (Wiley)

Michael Goldstein and David Wooff
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[1] Within the usual Bayesian view, adjusted expectation offers a simple,

tractable approximation to conditional expectation, which is useful in complex
problems, while adjusted variance is a strict upper bound to expected posterior

variance, over all prior specifications consistent with the moment structure.

The approximations are exact in certain important special cases, and in

particular if the joint probability distribution of B, D is multivariate normal.

Therefore, there are strong formal relationships between Bayes linear
calculations and the analysis of Gaussian structures.

[2] Adjusted expectation is numerically equivalent to conditional expectation in

the particular case where D comprises the indicator functions for the elements

of a partition, i.e. where each Di takes value one or zero and precisely one

element Di will equal one, eg, if B is the indicator for an event, then

ED(B) =
∑

i

P(B|Di)Di

Within the Bayes linear view, Bayes analysis is a special case of no greater or

lesser interest than any other special case.
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What do we learn by doing a Bayes linear analysis?

[Special case, what do we learn by doing a Bayesian analysis?]

If A and B are both events, what does P(B|A) mean?

P(B) is your betting rate on B (e.g. your fair price for a ticket that pays 1 if B
occurs, and pays 0 otherwise).

P(B|A) is your ”‘called off”’ betting rate on B (e.g. your fair price for a ticket
that pays 1 if B occurs, and pays 0 otherwise, if A occurs. If A doesn’t occur

your price is refunded).

This is NOT the same as the posterior probability that you will have for B if you

find out that A occurs.

[Indeed, there is no obvious relationship between the called off bet and

posterior judgment at all.]
What is the relationship between our current beliefs and our future beliefs?
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Tomorrow, as Mister Hyde, he will again make some such collection of
judgments. However, while these preferences may be rational at each

individual time point, there need be no linkage whatsoever between the two

collections of judgments.

In order to establish links between our judgments at different time points, we

need ways of describing ‘temporal rationality’ which go beyond being internally
rational at each time point.

Our description is operational. It concerns preferences between random

penalties, as assessed at different time points, considered as small cash

penalties or (better) payoffs in probability currency (i.e. tickets in a lottery with a

single prize).

[With payoffs in probability currency, expectation for the penalty equals the
probability of the reward. Therefore, changes in preferences between penalties

A and B over time correspond to changes in probability, rather than utility.]
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constrained by conditional statements about preferences given possible future
evidential outcomes, cannot require you to hold certain future preferences; for

example, you may obtain further, hitherto unsuspected, information or insights

into the problem before you come to make your future judgments.

It is more compelling to suggest that future preferences may determine prior

preferences. Suppose that you know that tomorrow you will prefer penalty A to

B. Should you prefer A to B now?
The reasons why current preferences cannot constrain future preferences,

based on unanticipated insights, etc., do not apply when the actual future

preference is known. What is left are disagreements of a fundamentally

different nature, for example, that Doctor Jekyll may consider that his

judgments when he turns into Mister Hyde will be intrinsically inferior.
Such views are not inherently contradictory. We need operational temporal

criteria to determine whether and to what extent your prior analysis may be of

value in determining your future judgments (which are weak enough to be

compelling in many situations).
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penalties, A and B. Suppose that at some future time the values of A and B
will be revealed, and you will pay the penalty that you have chosen.

For your future preferences to influence your current preferences, you must

know what your future preference will be.

You have a sure preference for A over B at (future) time t, if you know now,

as a matter of logic, that at time t you will not express a strict preference for

penalty B over penalty A.
The temporal consistency principle that we impose is that future sure

preferences are respected by preferences today. We call this the temporal
sure preference principle, as follows.

The temporal sure preference principle Suppose that you have a sure

preference for A over B at (future) time t. Then you should not have a strict
preference for B over A now.

[This is not a rationality requirement. It is a (weak) operationally testable

principle which will often appear reasonable and which has important

consequences for statistical reasoning.]
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We treat expectation as the primitive quantification for our approach. We follow

the development of de Finetti, and define the expectation of a random quantity,
Z as the value z̄ that you would choose for z, if faced with the penalty

L = k(Z − z)2, where k is a constant defining the units of loss, and the

penalty is paid in probability currency.

For a particular random quantity Z, you specify a current expectation E(Z)
and you intend to express a revised expectation Et(Z) at time t.
As Et(Z) is unknown to you, you may express beliefs about this quantity, and

in particular make a current expectation for (Z − Et(Z))2.

Suppose that F is any random quantity whose value you will surely know by

time t. Suppose that you assess a current expectation for (Z − F )2.

To satisfy temporal sure preference you must now assign

E((Z − Et(Z))2) ≤ E((Z − F )2)
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What are the implications of a partial collection of prior belief statements about

B, D for the posterior assessment that we may make for the expectation of B

having observed D?

The temporal sure preference principle implies that your actual posterior

expectation, ET (B), at time T when you have observed D, satisfies two

relations

B = ET (B) ⊕ S

ET (B) = ED(B) ⊕ R,

where S, R each have, a priori, zero expectation and are uncorrelated with
each other and with D.
Therefore, adjusted expectation is a prior inference for your actual posterior

judgments, which resolves a portion of your current variance for B.

If D represents a partition, ET (B) = ED(B) + R = E(B|D) + R where

E(R|Di) = 0, ∀i.
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quantities purely in terms of our beliefs about observable quantities.
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What does it mean to speak of the ”‘true but unknown”’ probability that a spun

coin will land heads?
For a finite population, size N , if n people have some property, e.g. they will

vote Labour, then it makes sense to say that the probability that a randomly

chosen person will vote Labour is n/N .

Exchangeability is the modelling construction that creates a form of population

for coin tosses. A sequence of coin tosses is exchangeable if every subset of
the same size has the same probability distribution.

De Finetti’s representation theorem shows that if coin tosses are

exchangeable, then all of our beliefs about coin tosses are exactly the same as

if we believed that our observations were a random series of tosses of a coin

with a ”‘true but unknown”’ value for the probability of heads.

The representation theorem allows us to express beliefs about unobservable
quantities purely in terms of our beliefs about observable quantities.

The only (but major) problem with this representation is that, to use the

representation theorem, we must specify all of our beliefs over all the outcomes

of possible collections of coin tosses of all sample sizes.
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In the Bayes linear approach to statistical modelling, models are constructed

directly from simple collections of judgments over observable quantities using

the second-order exchangeablity representation theorem.

An infinite sequence of vectors Xi is second-order exchangeable or SOE, if

the mean, variance and covariance structure is invariant under permutation,

namely

E(Xi) = µ, Var(X i) = Σ, Cov(Xi, Xj) = Γ, ∀i 6= j

We may represent each Xi as the sum of an underlying ‘population mean’ M ,

and individual variation Ri,, i.e.

X i = M ⊕ Ri

where the vectors M , R1, R2, ... are mutually uncorrelated, and

E(M) = µ, Var(M) = Γ, E(Ri) = 0, Var(Ri) = Σ − Γ, ∀i
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Suppose that Xi is SOE (to you, now) so Xi = M ⊕ Ri.

Suppose that you will observe, at time T , a sample (X[n] = X1, ..., Xn) and

revise all your judgements about all remaining Xj

In particular, you can now evaluate the Bayes linear adjustment En(M) for

M , given X[n]. However, by time T , quantity M may not even exist, as at
time T your judgements may no longer be SOE.

Theorem Suppose, you now judge the adjustments ET (Xj) to be SOE

(j > n). Then, you can construct a further quantity , ET (M ) so that

Xj − E(X) = M − E(M) + Rj

= [M − ET (M)]

⊕[ET (M) − En(M)]

⊕[En(M ) − E(M)]

⊕[Rj − ET (Rj)]

⊕[ET (Rj)]
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The relationships between actual belief revisions and formal analysis based on

partial prior specifications are entirely derived through stochastic relations.
This is no different than any other relationship between a real quantity and a

model for that quantity.

Bayes linear (and full Bayes) analysis is a model for our actual reasoning.

The model is special because there is a clear and well-defined relationship

between the model inference and our actual inference.
The subjectivist approach offers a coherent language and tool set for analysing

all of the uncertainties in complicated problems, and therefore provides the best

method that I know for analysing uncertainty in complex real world problems.
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