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What is imprecise in “imprecise regression”

® Thomas Augustin, 13th May 2008, Durham:

Imprecision in regression can arise in form of ...

|. Prior knowledge on some parameters,
Il. Data,
IIl. Regression line.

® s this list comprehensive?
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Robert’s imprecise regression line
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Hable (2009), ISIPTA Proceedings, Figure 5: Regression lines for the
real data set NHANES obtained by the minimum distance estimator
(red line) and by the least-squares-estimator (dashed line).
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The minimum distance estimator

Given LlyeooyLpn ~Miid Po.

One specifies an imprecise model (Py)gco, where each Py is a
coherent upper provision on a sample space (X, B) with credal set

Ma.
A true parameter is any 6y € © such that Py € Mjy, .

Find 6 by mimimizing the distance infpe, |2 > 0s, — Pyl| over
6 € O (linear programming, R package imprProbEst).

Note: The imprecise model has to be set up for every 6. For linear
regression this requires to set up a model for every (discrete)
combination of intercept and slope that is supposed to be

considered. For the Nhanes data, this meant that 55000 (!) list
elements had to be passed as arguments to the R function!

Citation Robert: “Das ist iibrigens ein grundséatzliches Problem, tiber das
man innerhalb der imprecise probability Gemeinde mal diskutieren sollte.”
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The minimum distance estimator

The MDE looks more “robust” than the LS estimator.

Actually, there are two differences between LS and MDE
® one is precise, the other one imprecise.
® one uses squared, the other one absolute differences.

Is the difference between the two lines maybe only due to the latter
(robustness) effect?

Need to compare to “robust” L1 estimator
> |yi —a — bx;| — min
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MDE and L1 regression
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® \We observe that the imprecise line is indeed intrinsically different to
the precise lines (whether robust or not).
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A fourth notion of imprecision in regression

® In which sense is the MDE estimator imprecise?
|. Priors? % There are no priors.
Il. Data? 7 We have to use precise data.

Ill. Regression line? Y The MDE yields (normally) one regression
line.

Hence, a fourth class is needed, in which all of the above are
precise, but estimation is based on an

V. Imprecise probability model.

® Denotational ambuigity here: Models with imprecise prior (impr.
Dirichlet, iLUCK, etc.) have often been labeled as “imprecise
probability models™ as well.

Are there 15 different wavs of thinkina of imprecise rearession? — . 7/17



Imprecise, and imprecise prior, models

® Useful citation: Utkin, Zatenko & Coolen (ISIPTA 09 proc.) write
over imprecise Bayesian models:

“Typically, a precise parametric model is assumed, with imprecision
following though the use of sets of conjugated priors”

® Hence, we distinguish in what follows beteeen

® imprecise probability models, where imprecision enters through
imprecise modelling (via credal set) of the model parameter.

# imprecise prior (or imprecise Bayesian) models, where
imprecision enters (usually) through sets of conjugate priors.
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Four notions on two levels

® We classify the four notions of imprecise regression:

» |. (Prior) and IV. (Model) concern the probability level.
» |l. (Data) and Ill. (Regression line) concern the

® |In total, we have 2% possible combinations of |-V (one of which
entirely precise), which can be visualized in form a 4 x 4 grid:
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The imprecise regression grid

(Bayes Lin.)
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Question: Which methods are _ l.e. from a “black-box” point

of view, they take precise data and produce a single regression line?
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Question: Which methods are “probabilistically precise” , i.e. they use only tech-
niques based on precise probability?

Statistics Imprecise data

level no yes no yes
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The frequentist sandpit to imprecise regression

® Einbeck, Durham Workshop, 2008: Notionally, imprecision is seen
as a consequence of lack of trust into (some part of ) the data at

hand.

® Essentially, what is used is a pair of cropped loss functions, each of
which distrusts (not dismisses!) outliers on either side of the data

cloud:
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MDE and imprecise “frequentist” regression

Consider imprecise regression with cropping at
o (almost no cropping — no “lack of trust”)

® =20 (strong cropping — strong “lack of trust”)
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Back to the imprecise probability grid:

(Bayes Lin.)
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From a viewpoint of effectiveness, the - seems to be attractive?
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A word on residuals

® Hardly any mentioning of the word “residual” so far in imprecise
regression papers.

» What is an imprecise residual?
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A word on residuals

® Hardly any mentioning of the word “residual” so far in imprecise

regression papers.
» What is an imprecise residual?

® Firstly, let's go one step back:
o What is a precise residual?

A

€ =Y — i = yi — E(yi|zs)
» Here imprecision enters straightforwardly through the use of
upper and lower expectations, giving upper and lower residuals:
& = yi — E(yilz:)

€& =vi — E(yi|z;)
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Upper and lower residuals

At each point x;, the upper residual gives the distance to the upper
(highest) estimate, and the lower residual gives the distance to the
lower (smallest) estimate.

regression with cropped loss functions, ¢c=20
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A word on residuals (2)

® Actually, this notion of residuals seem sort of strange:
o For any data position, either the lower and the upper residual

(or both) are not really meaningful.
# In fact, do we want two residuals?
® Note that for each data point ¢ there are three cases to consider:
» y; is above all lines. Then 0 < € < ;.
» y; is below all lines. Then 0 > ¢, > €.

® y; is somewhere in between.
® Define naive residuals
(& if >0
& =< 0 if sign(éégi) <0
e, if € <0
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Nalve residuals

regression with cropped loss functions, ¢=20
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® Here, the naive and the upper residuals are the same.
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Some questions for today

Based on the imprecise probability grid, can we reach an agreement
® which boxes are particularly worthwhile to follow?
» which boxes (columns/rows) seem to be rather useless?

» which box(es) would correspond to the colloquial or scientific
meaning of imprecise regression?

When using an imprecise probability model, do we have an idea
how we can avoid discretization of the parameter space?

Is there a natural definition/interpretation for imprecise residuals?

Do we know what we man with imprecise data ?
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