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What is impreise in �impreise regression�

Thomas Augustin, 13th May 2008, Durham:Impreision in regression an arise in form of ...I. Prior knowledge on some parameters,II. Data,III. Regression line.Is this list omprehensive?
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Robert's impreise regression line
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Hable (2009), ISIPTA Proeedings, Figure 5: Regression lines for thereal data set NHANES obtained by the minimum distane estimator(red line) and by the least-squares-estimator (dashed line).
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The minimum distane estimator

Given x1, . . . , xn ∼iid P0.One spei�es an impreise model (P̄θ)θ∈Θ, where eah P̄θ is aoherent upper provision on a sample spae (X ,B) with redal set

Mθ.A true parameter is any θ0 ∈ Θ suh that P0 ∈ Mθ0

.Find θ̂ by mimimizing the distane infP∈Mθ
|| 1

n

∑

δxi
− Pθ|| over

θ ∈ Θ (linear programming, R pakage imprProbEst).Note: The impreise model has to be set up for every θ. For linearregression this requires to set up a model for every (disrete)ombination of interept and slope that is supposed to beonsidered. For the Nhanes data, this meant that 55000 (!) listelements had to be passed as arguments to the R funtion!Citation Robert: “Das ist übrigens ein grundsätzliches Problem, über das
man innerhalb der imprecise probability Gemeinde mal diskutieren sollte.”
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The minimum distane estimator

The MDE looks more �robust� than the LS estimator.Atually, there are two di�erenes between LS and MDEone is preise, the other one impreise.one uses squared, the other one absolute di�erenes.Is the di�erene between the two lines maybe only due to the latter(robustness) e�et?Need to ompare to �robust� L1 estimator
∑

|yi − a − bxi| −→ min .
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MDE and L1 regression
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We observe that the impreise line is indeed intrinsially di�erent tothe preise lines (whether robust or not).
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A fourth notion of impreision in regression

In whih sense is the MDE estimator impreise?I. Priors? 	 There are no priors.II. Data? 	 We have to use preise data.III. Regression line? 	 The MDE yields (normally) one regressionline.Hene, a fourth lass is needed, in whih all of the above arepreise, but estimation is based on anIV. Impreise probability model.Denotational ambuigity here: Models with impreise prior (impr.Dirihlet, iLUCK, et.) have often been labeled as �impreiseprobability models� as well.
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Impreise, and impreise prior, models

Useful itation: Utkin, Zatenko & Coolen (ISIPTA 09 pro.) writeover impreise Bayesian models:

�Typially, a preise parametri model is assumed, with impreisionfollowing though the use of sets of onjugated priors�

Hene, we distinguish in what follows beteeenimpreise probability models, where impreision enters throughimpreise modelling (via redal set) of the model parameter.impreise prior (or impreise Bayesian) models, whereimpreision enters (usually) through sets of onjugate priors.
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Four notions on two levels

We lassify the four notions of impreise regression:

I. (Prior) and IV. (Model) onern the probability level.II. (Data) and III. (Regression line) onern the statistis level.

In total, we have 24 possible ombinations of I-IV (one of whihentirely preise), whih an be visualized in form a 4 × 4 grid:
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The imprecise regression grid
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Question: Which methods are “statistically precise” , i.e. from a “black-box” point

of view, they take precise data and produce a single regression line?
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Question: Which methods are “probabilistically precise” , i.e. they use only tech-

niques based on precise probability?
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The frequentist sandpit to impreise regression

Einbek, Durham Workshop, 2008: Notionally, impreision is seenas a onsequene of lak of trust into (some part of) the data athand.Essentially, what is used is a pair of ropped loss funtions, eah ofwhih distrusts (not dismisses!) outliers on either side of the dataloud:
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MDE and impreise �frequentist� regression

Consider impreise regression with ropping at=40 (almost no ropping � no �lak of trust�)=20 (strong ropping � strong �lak of trust�)
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Back to the imprecise probability grid:
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From a viewpoint of effectiveness, the diagonal seems to be attractive?
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A word on residuals

Hardly any mentioning of the word �residual� so far in impreiseregression papers.What is an impreise residual?

Firstly, let's go one step bak:What is a preise residual?

Here impreision enters straightforwardly through the use ofupper and lower expetations, giving upper and lower residuals:
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A word on residuals

Hardly any mentioning of the word �residual� so far in impreiseregression papers.What is an impreise residual?Firstly, let's go one step bak:What is a preise residual?
ǫ̂i = yi − ŷi = yi − Ê(yi|xi)Here impreision enters straightforwardly through the use ofupper and lower expetations, giving upper and lower residuals:

ǭi = yi − Ē(yi|xi)

ǫi = yi − E(yi|xi)
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Upper and lower residuals

At eah point xi, the upper residual gives the distane to the upper(highest) estimate, and the lower residual gives the distane to thelower (smallest) estimate.
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38.4 (upper residual)

60.2 (lower residual)
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A word on residuals (2)

Atually, this notion of residuals seem sort of strange:For any data position, either the lower and the upper residual(or both) are not really meaningful.In fat, do we want two residuals?Note that for eah data point i there are three ases to onsider:

yi is above all lines. Then 0 < ǭi < ǫi.
yi is below all lines. Then 0 > ǫi > ǭi.
yi is somewhere in between.De�ne naive residuals

ǫ̃i =







ǭi if ǭi > 0

0 if sign(ǭiǫi) < 0

ǫi if ǫi < 0
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Naive residuals
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Here, the naive and the upper residuals are the same.

Are there 15 different ways of thinking of imprecise regression? – p. 15/17



Some questions for today

Based on the impreise probability grid, an we reah an agreementwhih boxes are partiularly worthwhile to follow?whih boxes (olumns/rows) seem to be rather useless?whih box(es) would orrespond to the olloquial or sienti�meaning of imprecise regression?When using an impreise probability model, do we have an ideahow we an avoid disretization of the parameter spae?Is there a natural de�nition/interpretation for impreise residuals?Do we know what we man with impreise data ?
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