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Credal networks

The special case of a tree
Basic concept

Consider a directed tree, with a variable X, attached to each node s.

11

J

& @ ?\

De Cooman (UGent)

MePiCTIr




Credal trees

Local uncertainty models
Local uncertainty model associated with each node s

@ the variable X; may assume a value in the finite set .Z;

@ for each possible value x,,,) € Z,,() of the mother variable X,,),
we have a conditional lower expectation

QSme(s)): g(%) —R

where
O (flxm(s)) = lower expectation of £(X;), given that X,,,s) = x,(s)
@ local model Q (-|X,s)) is @ conditional lower expectation operator
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Credal trees under epistemic irrelevance

Definition

The graphical structure is interpreted as follows:

Conditional on the mother variable, the non-parent non-descendants
of each node variable are epistemically irrelevant to it and its

descendants.
X
X X5
X3 Xy Xe X3 Xy
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Credal networks under epistemic irrelevance
As an expert system
When the credal network is a (Markov) tree we can find the joint

model from the local models recursively, from leaves to root.
Exact message passing algorithm

— credal tree treated as an expert system

— linear complexity in the number of nodes

Python code
— written by Filip Hermans

— testing and connection with strong independence in cooperation
with Marco Zaffalon and Alessandro Antonucci

Current (toy) applications in HMMs
— character recognition
% — air traffic trajectory tracking and identification
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Constructing global from local models

From local to global models

For each node s, we want to construct a global model
I_Js('|Xm(s)): f(,%s) —R

representing the uncertainty about all variables X in the subtree
below s:
| s={t: tlies below s}

X7 X7 = (X7,X3,X9,X10,X11)
Xs X
X0 Xn
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Constructing global from local models

How to construct the global models

First crucial observation

We can build up any tree in a recursive fashion, repeating much
simpler basic building blocks.

X / 1 \‘ X;
S o ay
XJw\Xu
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Constructing global from local models

Recursive construction of the joint: graphical representation
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Constructing global from local models

Recursive construction of the joint: graphical representation

Xons)
|
Py(-[Xp(s)) <o Xy oo 0 (X))
VZANN
P (X)) s X, sz X Xy <o P (1X,)
Bcz(é-IXs)
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Constructing global from local models

Recursive construction of the joint: epistemically independent product

Conditional on Xj, the child variables X., ¢ € C(s) are epistemically

independent.
X
Bcl( |Xs) oo > Xe) Xie, Xy € P, (-Xs)
P, (+1X;)

Epistemically independent product on Z(X | (s1):
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Constructing global from local models

Recursive construction of the joint: marginal extension

Xm(s)
XS P Qs( |Xm(s))
Xiep, Xiey oo Xjg, <o P.(-|X;)
%UN%"@T
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Constructing global from local models

Recursive construction of the joint: marginal extension

Xin(s)
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Constructing global from local models

Recursive construction of the joint: marginal extension

Xin(s)
Xs e Qs(|Xm(s))
Xls\{s} ovrnne e Es( |Xs)
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Constructing global from local models

Recursive construction of the joint: marginal extension

Marginal extension or Law of iterated expectation:

Py(-[Xin() = Q(Es(1X5) [ Xin(s)) = O (@cec(s) Pe(1Xs) [ Xin(s))
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Constructing global from local models

Fundamental result

We start at the leaves with:
P,(-[Xin()) = Q,(|Xn(s)) for all leaves t

and move recursively upwards to the root of the tree.

Theorem

In this recursive fashion, we construct the point-wise smallest (most
conservative) collection of global models P(-[X,,)) that

(i) are coherent;
(if) are compatible with the local information;

(iii) reflect all the epistemic irrelevancies embodied in the graphical
structure.
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An example

Explaining the basics of the algorithm

X3 X X7 Xo
X, X, Xe

Xg
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An example

Explaining the basics of the algorithm

X, Xg
T T T
X4 X6 X8
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Explaining the basics of the algorithm
An example

X3 ?
! 7
Xq X3 Xs X7 Xo
X, X, X Xg
7 1 ) 7
X2 X4 X6 X8
Regular extension

R(g(X7)|X2 = x2,X3 = x3,X4 = x4,X6 = X6,Xg = x3)
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Explaining the basics of the algorithm

An example
X3 ?
X] —>X3 —>X5 —>)27 —>X9
I

X, Xa Xe¢ Xs
ESRE VR ORI
We have to calculate P, (f;), where

S = Ly e T o ) [8(X7) — 1] = i) f3
Now use the recursion formula for P;:

Py(fi) = Q,(E,(filX1))

and the factorisation property of independent natural extension:

E (fi1X1) = E (I /51%1) = Q,({x2}1X1) © P3(f3]X1)
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Explaining the basics of the algorithm

An example
X3 ?
X] —>X3 —>X5 —>)27 —>X9
I

X Xy Xe X3
ESRE VR ORI
We have to calculate P;(f3|X, ), where
53 = Ly L) (0} [8(X7) — 1] = Ty () f5

Now use the recursion formula for P5(-|X;):

P3(f31X1) = O, (E;5(531X3)1 X))

and the factorisation property of independent natural extension:
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Explaining the basics of the algorithm

An example
X3 ?

X1—>X3—>X5 —>)/(\7—>X9

L
X, X¢ Xo X
Hoou X %

In summary, so far we have:

P3(f3]X1) = 0, ({x3}1X1) © Q, ({xa }|x3) © Ps(f5x3)
E (filX1) = Q,({x2}1X1) © 0, ({x3}|X1) © @, ({xa }x3) © Ps (f5]x3)

0, (Q, (1 X100, ({xs}1X1)) Q,({xabs)Ps (fsbs)  Ps(fslxa)

0
£1(fl)={_ \ __3 _
01 (02({x2}1X1) Q3 ({x3}|X1)) Qa({xa}|x3)P5(f5]x3)  Ps(fs|x3) <0

>
<

m —
K 2 _B(wmanhor)
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Explaining the basics of the algorithm

An example
?

X5 —))?7 —)Xg

Lol

Xs Xg
X6 X3
Because P,(f1) > 0 < Ps(fs|x3) > 0, we have to calculate P5(fs|x3),

where
I5 =1y Iy [8(X7) — ] = Iiey

Now use the recursion formula for Ps(-|x3):
Ps(fs|x3) = Q4 (Es(f5]Xs) |x3)
and the factorisation property of independent natural extension:

Es(f51Xs) = Es(Ix) /71Xs5) = Q¢ ({x6}Xs5) © P7(f7|X5)

UNIVERSITEIT
GENT

De Cooman (UGent)

MePiCTIr 10 September 2009 16/20



Explaining the basics of the algorithm
An example

X5 —))/(\7—>X9

Lol

Xs  Xs
X5 X
We have to calculate P;(f7|Xs), where

1= Iy [8(X7) — ]
Now use the recursion formula for P;(-|Xs):

Py(f11Xs) = O, (E;(£11X7)|Xs)

and apply independent natural extension:
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Explaining the basics of the algorithm

An example

?
X5 —))27—>X9

|
Xo  Xg
X5 X

In summary, we have that

P(fi) >0< Ps(fs|x3) >0

where

Ps(fslx3) = Q5(Q, ({x6}1X5) © P7(f7X5)|x3)

Py (f11Xs5) = 0, (O (I} |X7) © [(X7) — 11]|X5)
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An example

Explaining the basics of the algorithm

g(X7)—u
!
X5 Xo
Ps(fs|x3) P7(f71Xs)
O (I Xs) Oy Iy X7)
Xs Xg
7 T
ixe)

Iixgy
P1(f71X5) = 0, (Qq (I} 1X7) © [2(X7) — 1] |Xs5)

Ps(f5]x3) = Q5(Q ({x6 }|X5) © 7 (f7]X5)|x3)

MePiCTlIr



Conclusion

On the positive side
@ very efficient, essentially linear in number of nodes

@ not much more conservative than strong independence:

— the same for forward inference
— dilation for backward inference

On the negative side

@ the algorithm works only for trees, not for polytrees or more
general acyclic directed nets

@ the algorithm works only for one function g at a time, it doesn’t
provide the entire credal set
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