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Credal networks
The special case of a tree

Basic concept
Consider a directed tree, with a variable Xs attached to each node s.
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Credal trees
Local uncertainty models

Local uncertainty model associated with each node s
the variable Xs may assume a value in the finite set Xs;
for each possible value xm(s) ∈Xm(s) of the mother variable Xm(s),
we have a conditional lower expectation

Qs(·|xm(s)) : L (Xs)→ R

where
Qs(f |xm(s)) = lower expectation of f (Xs), given that Xm(s) = xm(s)

local model Qs(·|Xm(s)) is a conditional lower expectation operator

Xm(s)

Xs′ . . . Xs . . . Xs′′
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Credal trees under epistemic irrelevance
Definition

The graphical structure is interpreted as follows:
Conditional on the mother variable, the non-parent non-descendants
of each node variable are epistemically irrelevant to it and its
descendants.
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Credal networks under epistemic irrelevance
As an expert system

When the credal network is a (Markov) tree we can find the joint
model from the local models recursively, from leaves to root.

Exact message passing algorithm
– credal tree treated as an expert system
– linear complexity in the number of nodes

Python code
– written by Filip Hermans
– testing and connection with strong independence in cooperation

with Marco Zaffalon and Alessandro Antonucci

Current (toy) applications in HMMs
– character recognition
– air traffic trajectory tracking and identification
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Constructing global from local models
From local to global models

For each node s, we want to construct a global model

Ps(·|Xm(s)) : L (X↓s)→ R

representing the uncertainty about all variables X↓s in the subtree
below s:

↓ s = {t : t lies below s}

X↓7 = (X7,X8,X9,X10,X11)X7

X8 X9

X10 X11

De Cooman (UGent) MePiCTIr 10 September 2009 6 / 20



Constructing global from local models
How to construct the global models

First crucial observation
We can build up any tree in a recursive fashion, repeating much
simpler basic building blocks.
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Constructing global from local models
Recursive construction of the joint: graphical representation

Xm(s)

Xs

X↓c1 X↓c2
. . . X↓cn

Qs(·|Xm(s))Ps(·|Xm(s))

Pcn(·|Xs)Pc1
(·|Xs)

Pc1
(·|Xs)
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Constructing global from local models
Recursive construction of the joint: epistemically independent product

Conditional on Xs, the child variables Xc, c ∈ C(s) are epistemically
independent.

Xs

X↓c1 X↓c2
. . . X↓cn Pcn(·|Xs)Pc1

(·|Xs)

Pc2
(·|Xs)

Epistemically independent product on L (X↓s\{s}):

Es(·|Xs) =⊗c∈C(s)Pc(·|Xs)
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Constructing global from local models
Recursive construction of the joint: marginal extension

Xm(s)

Xs

X↓c1 X↓c2
. . . X↓cn

Qs(·|Xm(s))

Pc(·|Xs)

Marginal extension or Law of iterated expectation:

Ps(·|Xm(s)) = Qs(Es(·|Xs)|Xm(s)) = Qs(⊗c∈C(s)Pc(·|Xs)|Xm(s))
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Constructing global from local models
Fundamental result

We start at the leaves with:

Pt(·|Xm(t)) = Qt(·|Xm(t)) for all leaves t

and move recursively upwards to the root of the tree.

Theorem
In this recursive fashion, we construct the point-wise smallest (most
conservative) collection of global models Ps(·|Xm(s)) that

(i) are coherent;
(ii) are compatible with the local information;
(iii) reflect all the epistemic irrelevancies embodied in the graphical

structure.
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Explaining the basics of the algorithm
An example
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?

Regular extension

R(g(X7)|X2 = x2,X3 = x3,X4 = x4,X6 = x6,X8 = x8)

= max
{

µ ∈ R : P1
(
I{x2}I{x3}I{x4}I{x6}I{x8}[g(X7)−µ]

)}
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Explaining the basics of the algorithm
An example
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We have to calculate P1(f1), where

f1 = I{x2} I{x3}I{x4}I{x6}I{x8}[g(X7)−µ] = I{x2} f3

Now use the recursion formula for P1:

P1(f1) = Q1(E1(f1|X1))

and the factorisation property of independent natural extension:

E1(f1|X1) = E1(I{x2} f3|X1) = Q2({x2}|X1)�P3(f3|X1)
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Explaining the basics of the algorithm
An example
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We have to calculate P3(f3|X1), where

f3 = I{x3}I{x4} I{x6}I{x8}[g(X7)−µ] = I{x3}I{x4} f5

Now use the recursion formula for P3(·|X1):

P3(f3|X1) = Q3(E3(f3|X3)|X1)

and the factorisation property of independent natural extension:

E3(f3|X3) = E3(I{x3}I{x4} f5|X3) = I{x3}Q4({x4}|x3)�P5(f5|x3)
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Explaining the basics of the algorithm
An example
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In summary, so far we have:

P3(f3|X1) = Q3({x3}|X1)�Q4({x4}|x3)�P5(f5|x3)

E1(f1|X1) = Q2({x2}|X1)�Q3({x3}|X1)�Q4({x4}|x3)�P5(f5|x3)

P1(f1) =

{
Q1

(
Q2({x2}|X1)Q3({x3}|X1)

)
Q4({x4}|x3)P5(f5|x3) P5(f5|x3)≥ 0

Q1
(
Q2({x2}|X1)Q3({x3}|X1)

)
Q4({x4}|x3)P5(f5|x3) P5(f5|x3)≤ 0

= P1({(x2,x3,x4)})�P5(f5|x3)
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Explaining the basics of the algorithm
An example
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Because P1(f1)≥ 0⇔ P5(f5|x3)≥ 0, we have to calculate P5(f5|x3),
where

f5 = I{x6} I{x8}[g(X7)−µ] = I{x6} f7

Now use the recursion formula for P5(·|x3):

P5(f5|x3) = Q5(E5(f5|X5)|x3)

and the factorisation property of independent natural extension:

E5(f5|X5) = E5(I{x6} f7|X5) = Q6({x6}|X5)�P7(f7|X5)
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Explaining the basics of the algorithm
An example
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We have to calculate P7(f7|X5), where

f7 = I{x8}[g(X7)−µ]

Now use the recursion formula for P7(·|X5):

P7(f7|X5) = Q7(E7(f7|X7)|X5)

and apply independent natural extension:

E7(I{x8}[g(X7)−µ]|X7) = Q8(I{x8}|X7)� [g(X7)−µ]
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Explaining the basics of the algorithm
An example
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In summary, we have that

P1(f1)≥ 0⇔ P5(f5|x3)≥ 0

where

P5(f5|x3) = Q5(Q6({x6}|X5)�P7(f7|X5)|x3)

P7(f7|X5) = Q7(Q8(I{x8}|X7)� [g(X7)−µ]|X5)
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Explaining the basics of the algorithm
An example
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X9
P7(f7|X5)P5(f5|x3)

I{x3}

I{x2} I{x4} I{x6} I{x8}

g(X7)−µ

P7(f7|X5) = Q7(Q8(I{x8}|X7)� [g(X7)−µ]|X5)

P5(f5|x3) = Q5(Q6({x6}|X5)�P7(f7|X5)|x3)
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Conclusion

On the positive side
very efficient, essentially linear in number of nodes
not much more conservative than strong independence:

– the same for forward inference
– dilation for backward inference

On the negative side
the algorithm works only for trees, not for polytrees or more
general acyclic directed nets
the algorithm works only for one function g at a time, it doesn’t
provide the entire credal set
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