FACULTY OF ENGINEERING

The MePiCTIr message passing algorithm:

Expert system inference in credal trees under epistemic irrelevance

Gert de Cooman

Ghent University, SYSTeMS gert.decooman@UGent.be

WPMSIIP2

Ludwig-Maximilians-Universität München 10 September 2009

Credal networks

The special case of a tree

Basic concept

Consider a directed tree, with a variable X_{s} attached to each node s.

Credal trees

Local uncertainty models

Local uncertainty model associated with each node s

- the variable X_{s} may assume a value in the finite set \mathscr{X}_{s};
- for each possible value $x_{m(s)} \in \mathscr{X}_{m(s)}$ of the mother variable $X_{m(s)}$, we have a conditional lower expectation

$$
\underline{Q}_{s}\left(\cdot \mid x_{m(s)}\right): \mathscr{L}\left(\mathscr{X}_{s}\right) \rightarrow \mathbb{R}
$$

where

$$
\underline{Q}_{s}\left(f \mid x_{m(s)}\right)=\text { lower expectation of } f\left(X_{s}\right) \text {, given that } X_{m(s)}=x_{m(s)}
$$

- local model $\underline{Q}_{s}\left(\cdot \mid X_{m(s)}\right)$ is a conditional lower expectation operator

Credal trees under epistemic irrelevance

Definition

The graphical structure is interpreted as follows:
Conditional on the mother variable, the non-parent non-descendants of each node variable are epistemically irrelevant to it and its descendants.

Credal networks under epistemic irrelevance

As an expert system

When the credal network is a (Markov) tree we can find the joint model from the local models recursively, from leaves to root.

Exact message passing algorithm

- credal tree treated as an expert system
- linear complexity in the number of nodes

Python code

- written by Filip Hermans
- testing and connection with strong independence in cooperation with Marco Zaffalon and Alessandro Antonucci

Current (toy) applications in HMMs

- character recognition
- air traffic trajectory tracking and identification

Constructing global from local models

From local to global models

For each node s, we want to construct a global model

$$
\underline{P}_{s}\left(\cdot \mid X_{m(s)}\right): \mathscr{L}\left(\mathscr{X}_{\downarrow s}\right) \rightarrow \mathbb{R}
$$

representing the uncertainty about all variables $X_{\downarrow s}$ in the subtree below s :

$$
\downarrow s=\{t: t \text { lies below } s\}
$$

Constructing global from local models

How to construct the global models

First crucial observation

We can build up any tree in a recursive fashion, repeating much simpler basic building blocks.

Constructing global from local models

How to construct the global models
First crucial observation
We can build up any tree in a recursive fashion, repeating much simpler basic building blocks.

Constructing global from local models

How to construct the global models
First crucial observation
We can build up any tree in a recursive fashion, repeating much simpler basic building blocks.

Constructing global from local models

How to construct the global models
First crucial observation
We can build up any tree in a recursive fashion, repeating much simpler basic building blocks.

Constructing global from local models

How to construct the global models
First crucial observation
We can build up any tree in a recursive fashion, repeating much simpler basic building blocks.

Constructing global from local models

How to construct the global models
First crucial observation
We can build up any tree in a recursive fashion, repeating much simpler basic building blocks.

Constructing global from local models

Recursive construction of the joint: graphical representation

Constructing global from local models

Recursive construction of the joint: graphical representation

$$
\underline{P}_{s}\left(\cdot \mid X_{m(s)}\right)<\ldots \ldots \ldots \ldots \ldots \ldots X_{s}
$$

Constructing global from local models

Recursive construction of the joint: epistemically independent product
Conditional on X_{s}, the child variables $X_{c}, c \in C(s)$ are epistemically independent.

Epistemically independent product on $\mathscr{L}\left(X_{\downarrow s \backslash\{s\}}\right)$:

$$
\underline{E}_{s}\left(\cdot \mid X_{s}\right)=\otimes_{c \in C(s)} \underline{P}_{c}\left(\cdot \mid X_{s}\right)
$$

Constructing global from local models

Recursive construction of the joint: marginal extension

Constructing global from local models

Recursive construction of the joint: marginal extension

Constructing global from local models

Recursive construction of the joint: marginal extension

Marginal extension or Law of iterated expectation:

$$
\underline{P}_{s}\left(\cdot \mid X_{m(s)}\right)=\underline{Q}_{s}\left(\underline{E}_{s}\left(\cdot \mid X_{s}\right) \mid X_{m(s)}\right)=\underline{Q}_{s}\left(\otimes_{c \in C(s)} \underline{P}_{c}\left(\cdot \mid X_{s}\right) \mid X_{m(s)}\right)
$$

Constructing global from local models

Recursive construction of the joint: marginal extension

Marginal extension or Law of iterated expectation:

$$
\underline{P}_{s}\left(\cdot \mid X_{m(s)}\right)=\underline{Q}_{s}\left(\underline{E}_{s}\left(\cdot \mid X_{s}\right) \mid X_{m(s)}\right)=\underline{Q}_{s}\left(\otimes_{c \in C(s)} \underline{P}_{c}\left(\cdot \mid X_{s}\right) \mid X_{m(s)}\right)
$$

Constructing global from local models

Fundamental result

We start at the leaves with:

$$
\underline{P}_{t}\left(\cdot \mid X_{m(t)}\right)=\underline{Q}_{t}\left(\cdot \mid X_{m(t)}\right) \text { for all leaves } t
$$

and move recursively upwards to the root of the tree.

Theorem

In this recursive fashion, we construct the point-wise smallest (most conservative) collection of global models $\underline{P}_{s}\left(\cdot \mid X_{m(s)}\right)$ that
(i) are coherent;
(ii) are compatible with the local information;
(iii) reflect all the epistemic irrelevancies embodied in the graphical structure.

Explaining the basics of the algorithm

An example

Explaining the basics of the algorithm

An example

Explaining the basics of the algorithm

An example

Regular extension

$$
\begin{aligned}
\underline{R}\left(g\left(X_{7}\right) \mid X_{2}=\right. & \left.x_{2}, X_{3}=x_{3}, X_{4}=x_{4}, X_{6}=x_{6}, X_{8}=x_{8}\right) \\
& =\max \left\{\mu \in \mathbb{R}: \underline{P}_{1}\left(I_{\left\{x_{2}\right\}} I_{\left\{x_{3}\right\}} I_{\left\{x_{4}\right\}} I_{\left\{x_{6}\right\}} I_{\left\{x_{8}\right\}}\left[g\left(X_{7}\right)-\mu\right]\right)\right\}
\end{aligned}
$$

Explaining the basics of the algorithm

An example

$$
\begin{array}{cccc}
& \begin{array}{c}
x_{3} \\
\\
X_{1}
\end{array} \rightarrow \stackrel{\tilde{X_{3}}}{ } \rightarrow & \begin{array}{c}
X_{5}
\end{array} \rightarrow & \stackrel{\hat{X_{7}}}{\downarrow} \rightarrow X_{9} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
X_{2} & X_{4} & X_{6} & X_{8} \\
\hat{x_{2}} & \hat{x_{4}} & \hat{x_{6}} & \hat{x_{8}}
\end{array}
$$

We have to calculate $\underline{P}_{1}\left(f_{1}\right)$, where

$$
f_{1}=I_{\left\{x_{2}\right\}} I_{\left\{x_{3}\right\}} I_{\left\{x_{4}\right\}} I_{\left\{x_{6}\right\}} I_{\left\{x_{8}\right\}}\left[g\left(X_{7}\right)-\mu\right]=I_{\left\{x_{2}\right\}} f_{3}
$$

Now use the recursion formula for \underline{P}_{1} :

$$
\underline{P}_{1}\left(f_{1}\right)=\underline{Q}_{1}\left(\underline{E}_{1}\left(f_{1} \mid X_{1}\right)\right)
$$

and the factorisation property of independent natural extension:

$$
\underline{E}_{1}\left(f_{1} \mid X_{1}\right)=\underline{E}_{1}\left(I_{\left\{x_{2}\right\}} f_{3} \mid X_{1}\right)=\underline{\bar{Q}}_{2}\left(\left\{x_{2}\right\} \mid X_{1}\right) \odot \underline{P}_{3}\left(f_{3} \mid X_{1}\right)
$$

Explaining the basics of the algorithm

An example

$$
\begin{array}{cccc}
& \begin{array}{c}
x_{3} \\
X_{1}
\end{array} \rightarrow \stackrel{?}{X_{3}} & \rightarrow X_{5} & \stackrel{\hat{X_{7}}}{X_{7}} \rightarrow X_{9} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
X_{2} & X_{4} & X_{6} & X_{8} \\
\hat{x_{2}} & \hat{x_{4}} & \hat{x_{6}} & \hat{x_{8}}
\end{array}
$$

We have to calculate $\underline{P}_{3}\left(f_{3} \mid X_{1}\right)$, where

$$
f_{3}=I_{\left\{x_{3}\right\}} I_{\left\{x_{4}\right\}} I_{\left\{x_{6}\right\}} I_{\left\{x_{8}\right\}}\left[g\left(X_{7}\right)-\mu\right]=I_{\left\{x_{3}\right\}} I_{\left\{x_{4}\right\}} f_{5}
$$

Now use the recursion formula for $\underline{P}_{3}\left(\cdot \mid X_{1}\right)$:

$$
\underline{P}_{3}\left(f_{3} \mid X_{1}\right)=\underline{Q}_{3}\left(\underline{E}_{3}\left(f_{3} \mid X_{3}\right) \mid X_{1}\right)
$$

and the factorisation property of independent natural extension:

$$
\underline{E}_{3}\left(f_{3} \mid X_{3}\right)=\underline{E}_{3}\left(I_{\left\{x_{3}\right\}} I_{\left\{x_{4}\right\}} f_{5} \mid X_{3}\right)=I_{\left\{x_{3}\right\}} \underline{\bar{Q}}_{4}\left(\left\{x_{4}\right\} \mid x_{3}\right) \odot \underline{P}_{5}\left(f_{5} \mid x_{3}\right)
$$

Explaining the basics of the algorithm

An example

In summary, so far we have:

$$
\begin{aligned}
& \underline{P}_{3}\left(f_{3} \mid X_{1}\right)=\underline{\underline{Q}}_{3}\left(\left\{x_{3}\right\} \mid X_{1}\right) \odot \bar{Q}_{4}\left(\left\{x_{4}\right\} \mid x_{3}\right) \odot \underline{P}_{5}\left(f_{5} \mid x_{3}\right) \\
& \underline{E}_{1}\left(f_{1} \mid X_{1}\right)= \\
& \underline{\bar{Q}}_{2}\left(\left\{x_{2}\right\} \mid X_{1}\right) \odot \overline{\underline{Q}}_{3}\left(\left\{x_{3}\right\} \mid X_{1}\right) \odot \bar{Q}_{4}\left(\left\{x_{4}\right\} \mid x_{3}\right) \odot \underline{P}_{5}\left(f_{5} \mid x_{3}\right) \\
& \underline{P}_{1}\left(f_{1}\right)= \\
& = \begin{cases}\underline{Q}_{1}\left(\underline{Q}_{2}\left(\left\{x_{2}\right\} \mid X_{1}\right) \underline{Q}_{3}\left(\left\{x_{3}\right\} \mid X_{1}\right)\right) \underline{Q}_{4}\left(\left\{x_{4}\right\} \mid x_{3}\right) \underline{P}_{5}\left(f_{5} \mid x_{3}\right) & \underline{P}_{5}\left(f_{5} \mid x_{3}\right) \geq 0 \\
\bar{Q}_{1}\left(\bar{Q}_{2}\left(\left\{x_{2}\right\} \mid X_{1}\right) \bar{Q}_{3}\left(\left\{x_{3}\right\} \mid X_{1}\right)\right) \bar{Q}_{4}\left(\left\{x_{4}\right\} \mid x_{3}\right) \underline{P}_{5}\left(f_{5} \mid x_{3}\right) & \underline{P}_{5}\left(f_{5} \mid x_{3}\right) \leq 0\end{cases}
\end{aligned}
$$

$$
=\underline{\underline{P}}_{1}\left(\left\{\left(x_{2}, x_{3}, x_{4}\right)\right\}\right) \odot \underline{P}_{5}\left(f_{5} \mid x_{3}\right)
$$

Explaining the basics of the algorithm

An example

$\begin{array}{cc} & \stackrel{?}{ } \\ X_{5} & \rightarrow \stackrel{\hat{X}_{7}}{ } \rightarrow X_{9} \\ \downarrow & \downarrow \\ X_{6} & X_{8} \\ \hat{x_{6}} & \widehat{x_{8}}\end{array}$
Because $\underline{P}_{1}\left(f_{1}\right) \geq 0 \Leftrightarrow \underline{P}_{5}\left(f_{5} \mid x_{3}\right) \geq 0$, we have to calculate $\underline{P}_{5}\left(f_{5} \mid x_{3}\right)$, where

$$
f_{5}=I_{\left\{x_{6}\right\}} I_{\left\{x_{8}\right\}}\left[g\left(X_{7}\right)-\mu\right]=I_{\left\{x_{6}\right\}} f_{7}
$$

Now use the recursion formula for $\underline{P}_{5}\left(\cdot \mid x_{3}\right)$:

$$
\underline{P}_{5}\left(f_{5} \mid x_{3}\right)=\underline{Q}_{5}\left(\underline{E}_{5}\left(f_{5} \mid X_{5}\right) \mid x_{3}\right)
$$

and the factorisation property of independent natural extension:

$$
\underline{E}_{5}\left(f_{5} \mid X_{5}\right)=\underline{E}_{5}\left(I_{\left\{x_{6}\right\}} f_{7} \mid X_{5}\right)=\underline{Q}_{6}\left(\left\{x_{6}\right\} \mid X_{5}\right) \odot \underline{P}_{7}\left(f_{7} \mid X_{5}\right)
$$

Explaining the basics of the algorithm

An example

$$
\begin{array}{cc}
& \stackrel{?}{\hat{N}_{7}} \\
X_{5} & \rightarrow X_{9} \\
\downarrow & \downarrow \\
X_{6} & X_{8} \\
\hat{x_{6}} & \widehat{x_{8}}
\end{array}
$$

We have to calculate $\underline{P}_{7}\left(f_{7} \mid X_{5}\right)$, where

$$
f_{7}=I_{\left\{x_{8}\right\}}\left[g\left(X_{7}\right)-\mu\right]
$$

Now use the recursion formula for $\underline{P}_{7}\left(\cdot \mid X_{5}\right)$:

$$
\underline{P}_{7}\left(f_{7} \mid X_{5}\right)=\underline{Q}_{7}\left(\underline{E}_{7}\left(f_{7} \mid X_{7}\right) \mid X_{5}\right)
$$

and apply independent natural extension:

$$
\underline{E}_{7}\left(I_{\left\{x_{8}\right\}}\left[g\left(X_{7}\right)-\mu\right] \mid X_{7}\right)=\overline{\underline{Q}}_{8}\left(I_{\left\{x_{8}\right\}} \mid X_{7}\right) \odot\left[g\left(X_{7}\right)-\mu\right]
$$

Explaining the basics of the algorithm

An example

In summary, we have that

$$
\underline{P}_{1}\left(f_{1}\right) \geq 0 \Leftrightarrow \underline{P}_{5}\left(f_{5} \mid x_{3}\right) \geq 0
$$

where

$$
\begin{aligned}
& \underline{P}_{5}\left(f_{5} \mid x_{3}\right)=\underline{Q}_{5}\left(\underline{Q}_{6}\left(\left\{x_{6}\right\} \mid X_{5}\right) \odot \underline{P}_{7}\left(f_{7} \mid X_{5}\right) \mid x_{3}\right) \\
& \underline{P}_{7}\left(f_{7} \mid X_{5}\right)=\underline{Q}_{7}\left(\underline{Q}_{8}\left(I_{\left\{x_{8}\right\}} \mid X_{7}\right) \odot\left[g\left(X_{7}\right)-\mu\right] \mid X_{5}\right)
\end{aligned}
$$

Explaining the basics of the algorithm

An example

Conclusion

On the positive side

- very efficient, essentially linear in number of nodes
- not much more conservative than strong independence:
- the same for forward inference
- dilation for backward inference

On the negative side

- the algorithm works only for trees, not for polytrees or more general acyclic directed nets
- the algorithm works only for one function g at a time, it doesn't provide the entire credal set

