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What can IP contribute to the reliable handling of

unobserved data heterogeneity?
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Traditional Maximum Likelihood

1) Traditional Maximum Likelihood
▶ THE frequentist estimation method
→ consistency
→ asymptotic normality
→ asymptotic efficiency
→ universally applicable
→ gives immediately confidence regions and tests

▶ Observation i , i = 1, . . . , n
▶ Y1, . . . ,Yn := Y outcome
▶ X1, . . . ,Xn := X covariates
▶ Yi ∣Xi ∼ pvartheta,xi with density f#,Xi

▶ Estimate # from observations of Y1, . . . ,Yn

▶ After having observed y1, . . . , yn, the higher
n∏

i=1

P#(Yi = yi ∣Xi ) or
n∏

i=1

f#,Xi
, (∗)

the more plausible the conclusion that # is the true parameter.
▶ So estimate # by maximizing (∗) with respect to #
→ maximum likelihood estimator() 1 / 17



Traditional Maximum Likelihood

Examples
1. Y1, . . . ,Yn normally distributed with unknown mean � and given

variance �2:
n∏

i=1

1√
2��

⋅ exp

(
− 1

2�2
(yi − �)2

)
→ max

�

⇐⇒
n∑

i=1

(yi − �)2 → min
�

Least square problem! (Solution �̂ = 1
n

∑n
i=1 yi )

2. Y1, . . . ,Yn ∼ Poisson(�)
n∏

i=1

�yi

yi !
exp(−�) → max

�

⇐⇒
n∑

i=1

(yi ln�− �) → max
�
⇒ �̂ =

1

n

n∑
i=1

yi
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Traditional Maximum Likelihood

3. Linear regression
Yi = � + � ⋅ xi + "i

��
��
�
��
�
��
�
��

��

�{
1

�

yi ∣xi ∼ N(x ′i�, �
2)

Again maximum likelihood principle and least squares principle
coincide

�̂, �̂ by
n∑

i=1

(yi − �− x ′i�)2 → min
�,�
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Credal (Parametric) Sample Models

2) Credal (Parametric) Sample Models

▶ Let Θ ⊆ ℝ, parametric family of classical distributions (p#,Xi
)#∈Θ .

▶ Credal parametric sampling model (imprecise model, not just
imprecise data!).
Parameter interval-valued [

#, #
]

Credal set
ℳXi

=
{
P#,Xi

∣# ∈
[
#, #

]}
Strongly independent observations

n
X
i=1
ℳXi

=

{
n∏

i=1

P#i ,Xi
∣#i ∈

[
#, #

]}
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Credal (Parametric) Sample Models

What is it good for?

Heterogeneity interpretation:
Overall parameter + individual parameter:

#i = #overall + �i

unobserved

biometrics overall treatment
effect

hospital-, patient-
specific

insurance overall risk individual risk atti-
tude

dynamical econo-
metrical model

overall chance individual charac-
teristics
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Credal (Parametric) Sample Models
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Credal (Parametric) Sample Models

In linear regression analysis “set of “true” regression lines”

simple linear regression: xi one-dimensional

i) yi = �i + �xi + "
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�

�overall

{
�1}
�2}

�i = �overall + �i

xi dummy variables: Analysis of variance with random effects
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Credal (Parametric) Sample Models

ii) yi = � + �ixi + "
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p

�i = �overall + �i
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Traditional solution: random effects model

3) Traditional solution: random effects model

Assume certain distribution, described by f̃ (⋅), for �i , typically
�i ∼ N(0, �2

�)
Consider likelihood

n∏
i=1

f#overall (xi ) =
n∏

i=1

∫
f#overall (xi ∣�i ) ⋅ f̃ (�i )d�i

to estimate #overall

- point estimator, irrespectively of amount of heterogeneity

- depends, of course, strongly on f̃ (⋅)
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Level � – Credal Maximum Likelihood Estimation

4) Level � – Credal Maximum Likelihood Estimation
Definition:
Let � ≥ 0 be fixed and let, for given data y1, y2, . . . , yn,

#̂1, . . . , #̂n, L̂#, Û#,

be an optimal solution of

n∏
i=1

f#i (yi )→ max
#1,...,#n,L#,U#

subject to

L# ≤ #i ≤ U#, i = 1, . . . , n

U#− L# ≤ � ,

then [
L̂#, Û#

]
is called level-� credal maximum likelihood estimator.
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Level � – Credal Maximum Likelihood Estimation

Remarks:

i) Obviously

� = 0⇒ L̂# = Û# = #̂ML

(the traditional ML estimator)

ii) Of course, it is much more convenient to replace the objective
function by the equivalent objective function

n∑
i=1

ln f#i (yi )→ max
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Examples: Least Squares Problems

5) Examples: Least Squares Problems
Example I: normal model: Normal distribution (ML and Least Squares
coincide), parameter �i .
We have to consider the quadratic optimization problem

n∑
i=1

(yi − �i )2 → min

subject to

L� ≤ �i ≤ U� and U�− L� ≤ �,
which can be solved by standard software.

i) At least in the case of normal distribution with unknown location
parameter

� →∞ : L̂# = min
i=1,...,n

yi

ii) The problem can be viewed as a function of the lower interval limit T
of the estimator

ℰ(yi ,T ) = (yi − T )2 ⋅ I{yi ≤ T}+
(
yi − (T + �)2

)
⋅ I{yi ≥ T + �}
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Examples: Least Squares Problems

Some numerical toy examples (n = 4, MAPLE)

i) y1 = 1; y2 = 2; y3 = 3; y4 = 4

�
[
L̂�, Û�

]
0: 2.5 . . .
0.1: [2.45; 2.55]
0.5: [2.25; 2.75]
1: [2; 3]

ii) Note
[
L̂�, Û�

]
is not just �̂± something

y1 = 1; y2 = 2; y3 = 3; y4 = 14

�
[
L̂�, Û�

]
0: 5
0.1: [4.975; 5.075]
0.5: [4.875; 5.375]
1: [4.75; 5.75]
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Examples: Least Squares Problems

Example II: simple linear regression In the regression context we have
to consider

n∑
i=1

(yi − �i − �xi )→ min

or
n∑

i=1

(yi − �− �ixi )→ min

subject to the restrictions

�i ∈ [L̂�, Û�], Û� − L̂� ≤ �

and
�i ∈ [L̂�, Û�], Û� − L̂� ≤ �

respectively
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Outlook
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Outlook

6) Outlook

Conjecture: Objective function convex then

�1 ≤ �2 ⇒ [L̂�1#, Û�1#] ⊆ [L̂�2#, Û�2#]

→ Note special case � = 0 (tradit. ML)
Then:

Under i.i.d (#i ≡ #)

lim
n→∞

P#

([
L̂�#(n), Û�#(n)

]
∋ #
)

= 1

“i.i.d consistency of level �-ML estimation”
(Proof: traditional consistency of ML; conjecture above)

() 15 / 17



Outlook

On the Choice of �

a) Look at the objective function as a function of �:
Use that � where a further increase does not improve the objective
function substantially (cp. elbow criterion in principal component
analysis)

b) fuzzy set interpretation; estimator as a fuzzy set, membership
function increasing in �

1

0
ML

�-r

relation to fuzzy probability !?
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Outlook

c) Penalization (like in nonparametric statistic)
look at the objective function

n∑
i=1

ln f#(yi )− � ⋅ � → max

� for instance by cross-validation

Additional aspects

▶ What can we learn when (P#)#∈Θ is stochastically ordered?

▶ Comparison to traditional random effect models

▶ Method can be extended to robust objective functions → credal
M-estimators
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