(Unverbindliche!) Lösungsnotizen zur Aufgabe 2 von Blatt 7

Zu Übungszwecken bitte die allgemeinen Formeln ergänzen um die Lösung zu vervollständigen!

a) • Jährliche Wachstumsraten $r_i =$

ergänzen!

Jahr	$\mid i \mid$	b_i	x_i	r_i
2011	0	131	_	
2012	1	187	$\frac{187}{131} \approx 1.4275$	0.4275
2013	2	255	$\frac{255}{187} \approx 1.3636$	0.3636
2014	3	309	$\frac{309}{255} \approx 1.2118$	0.2118
2015	4	382	$\frac{382}{309} \approx 1.2362$	0.2362

ullet Geometrisches Mittel $ar{x}_{
m geom} =$

ergänzen!

$$\bar{x}_{\text{geom}} = (1.4275 \cdot 1.3636 \cdot 1.2118 \cdot 1.2362)^{\frac{1}{4}} = 1.30676 \approx 1.31 \quad \text{oder (k\"{u}rzer!)}$$

$$= \left(\frac{187}{131} \cdot \frac{255}{187} \cdot \frac{309}{255} \cdot \frac{382}{309}\right)^{\frac{1}{4}} = \left(\frac{382}{131}\right)^{\frac{1}{4}} = 1.306767 \approx 1.31$$

• Durchschnittliche jährliche Wachstumsrate $\bar{r}=$

ergänzen!

$$\bar{r_i} = 0.31$$
, also 31%

Vergleiche mit arithmetischem Mittel $\bar{x} =$

ergänzen!

 $\frac{1}{4}(0.4275+\ldots+0.2362)\approx 0.309775,$ hier nur kleiner Unterschied, aber falsch! (Probe wäre: $131\cdot 1.306767^4\approx 382,$ wohingegen $131\cdot 1.309775^4\approx 386)$

b) Prognose $b_n =$

ergänzen!

Prognose für 2025: $b_{2025} \approx b_{2015} \cdot (\bar{x}_{\text{geom}})^{10} \approx 382 \cdot 1.30676^{10} \approx 5547$

Mögliche Probleme:

- Prognose macht nur Sinn, wenn Wachstum konstant bleibt!
- Hier kein lineares Wachstum, deshalb: Völlig absurd!
- c) (**Zusatzfrage**) Das arithmetische Mittel der logarithmierten Werte ergibt, wiederum logarithmiert, das geometrische Mittel der Werte:

$$\ln \bar{x}_{\text{geom}} = \ln \left(\left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \right)$$

$$= \frac{1}{n} \ln \left(\prod_{i=1}^{n} x_i \right) \qquad [\text{Rechenregel } \ln(a^b) = b \cdot \ln(a)]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \qquad [\text{Rechenregel } \ln(a \cdot b) = \ln(a) + \ln(b)]$$

Das geometrische Mittel ist also ein arithmetisches Mittel auf der logarithmierten Skala.