1 Einführung und erste Grundbegriffe

1.1 Vorbemerkungen zur Organisation, Bedeutung und Struktur der Veranstaltung

1.2 Was soll Statistik (nicht)?

1.3 Literatur

1.4 Grundbegriffe

Notation Merkmale werden typischerweise mit Großbuchstaben bezeichnet (X, Y, Z, etc.), Ausprägungen mit dem zugehörigen Kleinbuchstaben (x, y, z). Der Wertebereich wird mit W_x, W_y, W_z bzw. W bezeichnet.

Formal ist jedes Merkmal eine Funktion.

$$\begin{array}{cccc} X: & \Omega & \to & W \\ & \omega & \mapsto & X(\omega) \end{array}$$

Merkmalstypen

- Stetige, quasi-stetige und diskrete Merkmale
- \bullet Skalenniveaus
- Qualitative und quantitative Merkmale

2 Häufigkeitsverteilungen

Ausgangssituation An n Einheiten $\omega_1, \ldots, \omega_n$ sei das Merkmal X beobachtet worden. Die verschiedenen potentiell möglichen Merkmalsausprägungen werden mit a_1, \ldots, a_k bezeichnet.

2.1 Häufigkeiten

Absolute Häufigkeiten der Merkmalsausprägungen Für jedes a_j , $j=1,\ldots,k$, bezeichnen h_j und $h(a_j)$ die absolute Häufigkeit der Ausprägung a_j , d.h. die Anzahl der x_i aus x_1,\ldots,x_n mit $x_i=a_j$.

Formal:

$$h_i := h(a_i) := |\{\omega \in \Omega \mid X(\omega) = a_i\}|.$$

Es gilt:

$$\sum_{j=1}^{k} h_j = n.$$

Relative Häufigkeiten der Merkmalsausprägungen Für jedes a_j , $j=1,\ldots,k$, bezeichnen f_j und $f(a_j)$ die relative Häufigkeit der Ausprägung a_j , also

$$f_j := f(a_j) := \frac{h_j}{n}.$$

 f_1, f_2, \ldots, f_k nennt man die relative Häufigkeitsverteilung. Es gilt:

$$\sum_{j=1}^{k} f_j = 1.$$

Häufigkeitstabelle

j	a_{j}	h_j	f_{j}	
1	a_1	h_1	f_1	
2	a_2	h_2	f_2	
3	a_3	h_3	f_3	
:	÷	÷	:	
k	a_k	h_k	f_k	
Σ		n	1	

2.2 Grafische Darstellung

2.3 Histogramm

2.4 Kumulierte Häufigkeiten und empirische Verteilungsfunktion

Definition Gegeben sei die Urliste x_1, \ldots, x_n eines (mindestens) ordinalskalierten Merkmals mit der Häufigkeitsverteilung h_1, \ldots, h_k bzw. f_1, \ldots, f_k . Dann heißt

$$H(x) = \sum_{j: a_j \le x} h(a_j) = \sum_{j: a_j \le x} h_j$$

absolute kumulierte Häufigkeitsverteilung und

$$F(x) = \sum_{j: a_j \le x} f(a_j) = \frac{1}{n} \sum_{j: a_j \le x} h(a_j) = \frac{H(x)}{n}$$

relative kumulierte Häufigkeitsverteilung bzw. empirische Verteilungsfunktion.

Gruppierte Daten

- k Klassen $[c_0, c_1), \ldots, [c_{j-1}, c_j), \ldots, [c_{k-1}, c_k], h_j$ Häufigkeit in j-ter Klasse, $j = 1, \ldots, k$
- Verwende bei einem x aus der Klasse $[c_{j-1}, c_j)$ als Approximation für H(x) folgenden, aus der linearen Interpolation gewonnenen, Punkt:

$$H(x) \approx H(c_{j-1}) + \frac{h_j}{(c_j - c_{j-1})} \cdot (x - c_{j-1})$$

3 Lage- und Streuungsmaße

3.1 Arithmetisches Mittel und Varianz

Definition (Arithmetisches Mittel) Sei x_1, \ldots, x_n die Urliste eines (mindestens) intervallskalierten Merkmals X. Dann heißt

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i$$

das arithmetische Mittel der Beobachtungen x_1, \ldots, x_n .

Alternative Berechnung basierend auf Häufigkeiten Hat das Merkmal X die Ausprägungen a_1, \ldots, a_k und die (relative) Häufigkeitsverteilung h_1, \ldots, h_k bzw. f_1, \ldots, f_k , so gilt:

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} a_j h_j = \sum_{j=1}^{k} a_j f_j.$$

Definition (Varianz) Sei x_1, \ldots, x_n die Urliste eines intervallskalierten Merkmals X. Dann heißen

$$\tilde{s}_X^2 := \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

die (empirische) Varianz oder Stichprobenvarianz und

$$\tilde{s}_X := \sqrt{\tilde{s}_X^2}$$

die empirische Streuung, Stichprobenstreuung oder Standardabweichung von X.

Alternative Berechnung basierend auf Häufigkeiten Sind die Ausprägungen a_1, \ldots, a_k mit (relativer) Häufigkeitsverteilung h_1, \ldots, h_k bzw. f_1, \ldots, f_k gegeben, so gilt

$$\tilde{s}_X^2 = \frac{1}{n} \sum_{j=1}^k h_j (a_j - \bar{x})^2 = \sum_{j=1}^k f_j (a_j - \bar{x})^2.$$

Verschiebungssatz Es gilt

$$\tilde{s}_X^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 = \overline{x^2} - (\bar{x})^2,$$

$$= \left(\frac{1}{n} \sum_{j=1}^k (a_j^2) \cdot h_j\right) - \left(\frac{1}{n} \sum_{j=1}^k a_j \cdot h_j\right)^2$$

$$= \sum_{j=1}^k (a_j^2) \cdot f_j - \left(\sum_{j=1}^k a_j \cdot f_j\right)^2$$

Korrigierte empirische Varianz Sei x_1, \ldots, x_n die Urliste eines intervallskalierten Merkmals X. Dann heißt

$$s_X^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

die korrigierte empirische Varianz oder korrigierte Stichprobenvarianz von X.

Satz (Arithmetisches Mittel und lineare Transformationen) Gegeben sei die Urliste x_1, \ldots, x_n eines (mindestens) intervallskalierten Merkmals X. Betrachtet wird das (linear transformierte) Merkmal $Y = a \cdot X + b$ und die zugehörigen Ausprägungen y_1, \ldots, y_n . Dann gilt für das arithmetische Mittel \bar{y} von Y:

$$\bar{u} = a \cdot \bar{x} + b.$$

Satz (Varianz und lineare Transformationen) Sei x_1, \ldots, x_n die Urliste eines mindestens intervallskalierten Merkmals X mit $\tilde{s}_X > 0$ und y_1, \ldots, y_n die zugehörige Urliste des Merkmals $Y = a \cdot X + b$. Dann gilt

$$\tilde{s}_Y^2 = a^2 \cdot \tilde{s}_X^2$$

und

$$\tilde{s}_Y = |a| \cdot \tilde{s}_X.$$

Definition (Arithmetisches Mittel bei gruppierten Daten) Sei X ein intervallskaliertes Merkmal, das in gruppierter Form mit k Klassen $[c_0, c_1), [c_1, c_2), \ldots, [c_{k-1}, c_k]$ erhoben wurde. Mit h'_{ℓ} , $\ell = 1, \ldots k$, als absoluter Häufigkeit der ℓ -ten Klasse, f'_{ℓ} als zugehöriger relativer Häufigkeit und $m_{\ell} := \frac{c_{\ell} + c_{\ell-1}}{2}$ als der jeweiligen Klassenmitte definiert man als arithmetisches Mittel für gruppierte Daten

$$\bar{x}_{\text{grupp}} := \frac{1}{n} \sum_{\ell=1}^{k} h'_{\ell} m_{\ell} = \sum_{\ell=1}^{k} f'_{\ell} m_{\ell}.$$

Satz (Arithmetisches Mittel bei geschichteten Daten) Zerfällt die Grundgesamtheit in z Schichten, so kann \bar{x} aus den Schichtmitteln $\bar{x}^{(\ell)}$, $\ell = 1, \ldots, z$, berechnet werden:

$$\bar{x} = \frac{1}{n} \sum_{\ell=1}^{z} n^{(\ell)} \bar{x}^{(\ell)}.$$

Dabei bezeichnet $n^{(\ell)}$ die Anzahl der Elemente in der ℓ -ten Schicht.

Satz (Varianz bei geschichteten Daten) – Varianzzerlegung / Streuungszerlegung

- Schicht $1, \ldots, \ell, \ldots, z$
- Besetzungszahlen $n^{(1)}, \dots, n^{(\ell)}, \dots, n^{(z)}; \qquad \sum_{l=1}^{z} n^{(\ell)} = n$
- Mittelwerte $\bar{x}^{(1)}, \dots, \bar{x}^{(\ell)}, \dots, \bar{x}^{(z)}$
- Varianzen $\tilde{s}^{2^{(1)}}, \dots, \tilde{s}^{2^{(\ell)}}, \dots, \tilde{s}^{2^{(z)}}$

Mit
$$\tilde{s}_{\text{innerhalb}}^2 := \frac{1}{n} \sum_{\ell=1}^{z} n^{(\ell)} \tilde{s}^{2^{(\ell)}}$$
 sowie
$$\tilde{s}_{\text{zwischen}}^2 := \frac{1}{n} \sum_{\ell=1}^{z} n^{(\ell)} (\bar{x}^{(\ell)} - \bar{x})^2$$
 gilt
$$\tilde{s}^2 = \tilde{s}_{\text{innerhalb}}^2 + \tilde{s}_{\text{zwischen}}^2 .$$

3.2 Median & Quantile

Defintion (Median) Gegeben sei die Urliste x_1, \ldots, x_n eines (mindestens) ordinalskalierten Merkmals X. Jede Zahl x_{med} mit

$$\frac{|\{i|x_i \leq x_{\text{med}}\}|}{n} \geq 0.5 \quad \text{und} \quad \frac{|\{i|x_i \geq x_{\text{med}}\}|}{n} \geq 0.5$$

heißt Median.

Definition (Quantile) Gegeben sei die Urliste x_1, \ldots, x_n eines (mindestens) ordinalskalierten Merkmals X und eine Zahl $0 < \alpha < 1$. Jede Zahl x_α mit

$$\frac{|\{i|x_i \le x_\alpha\}|}{n} \ge \alpha$$
 und $\frac{|\{i|x_i \ge x_\alpha\}|}{n} \ge 1 - \alpha$

heißt $\alpha \cdot 100\%$ -Quantil.

Spezielle Quantile

- Median: $x_{0.5} = x_{\text{med}}$.
- Quartile: $x_{0.25}, x_{0.75}$.
- Dezile: $x_{0.1}, x_{0.2}, \ldots, x_{0.8}, x_{0.9}$.

Alternative Definition des Medians über die geordnete Urliste $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$:

$$x_{\text{med}} := \begin{cases} \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right) & \text{für } n \text{ gerade} \\ x_{\left(\frac{n+1}{2}\right)} & \text{für } n \text{ ungerade} \end{cases}$$

Satz (Verhalten unter Transformation) Sei $x_1, x_2, ..., x_n$ die Urliste eines (mindestens) ordinalskalierten Merkmals X und g eine monotone Funktion.

i) Ist x_{med} ein Median von X, so gilt mit $y_1 = g(x_1), \ldots, y_n = g(x_n)$ als Urliste des Merkmals Y = g(X):

$$y_{med} = g(x_{med})$$

ist ein Median von Y.

ii) Fordert man zusätzlich, dass $g(\cdot)$ monoton steigend ist, so gilt die entsprechende Aussage für beliebige Quantile.

Bei gruppierten Daten gilt für alle $\alpha \in (0,1)$ und alle α -Quantile x_{α} : Die Gruppe, in der x_{α} liegt, ist ein α -Quantil für das gruppierte Merkmal X_{grupp} .

3.3 Modus

Definition Sei x_1, \ldots, x_n die Urliste eines nominalskalierten Merkmals mit den Ausprägungen a_1, \ldots, a_k und der Häufigkeitsverteilung h_1, \ldots, h_k , so heißt a_{j^*} Modus x_{mod} genau dann, wenn $h_{j^*} \geq h_j$, für alle $j = 1, \ldots, k$.

3.4 Ein kurzer Vergleich der Lagemaße und einige Bemerkungen

3.5 Geometrisches und harmonisches Mittel

Definition (Geometrisches Mittel) Sei $\Omega = \{0, ..., n\}$ eine Menge von Zeitpunkten und $b_0, b_1, ..., b_n$ mit $b_i := B(i)$ die Urliste eines Merkmals B. Für i = 1, ..., n heißt

$$x_i = \frac{b_i}{b_{i-1}}$$

der i-te Wachstumsfaktor und

$$r_i = \frac{b_i - b_{i-1}}{b_{i-1}} = x_i - 1$$

die i-te Wachstumsrate.

Dann bezeichnet man

$$\bar{x}_{\text{geom}} := \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} = (x_1 \cdot x_2 \cdot \dots \cdot x_n)^{\frac{1}{n}}$$

als das geometrische Mittel der Wachstumsfaktoren x_1, \ldots, x_n .

Es gilt

$$b_n = b_0 \cdot (\bar{x}_{\text{geom}})^n.$$

Definition (Harmonisches Mittel) Sei x_1, \ldots, x_n mit $x_i \neq 0$ für alle i die Urliste eines verhältnisskalierten Merkmals X. Dann heißt

$$\bar{x}_{\text{har}} := \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i}}$$

das harmonische Mittel der x_1, \ldots, x_n .

3.6 Weitere Streuungsmaße

Variationskoeffizient Ist $\bar{x} > 0$, so heißt die Größe

$$v_X := \frac{\tilde{s}_X}{\bar{x}}$$

Variationskoeffizient des Merkmals X.

Inter-Quartils-Abstand Sind $x_{0.25}$ und $x_{0.75}$ das obere und das untere Quartil eines Merkmals, so heißt

$$d_{QX} := x_{0.75} - x_{0.25}$$

 ${\rm der}\ Interquartils abstand.$

Median-Absolute-Deviation Der Median der Werte $|x_i - x_{med}|$, i = 1, ..., n, heißt Median-Absolute-Deviation von X (MAD_X) .

Spannweite Die Größe

$$R_X := x_{(n)} - x_{(1)}$$

heißt Spannweite von X.

3.7 Boxplot