
Ludwig-Maximilians-University Munich

Department of Statistics - Master Seminar WS15/16

Probabilistic Graphical Models

Inference

Johannes Langer

Advisor:
M.Sc. Eva Endres
M.Sc. Paul Fink

Date: 04.03.2016

Abstract

Inference with highly multivariate joint distributions is in many cases intractable.
Such cases require to factorize the joint distribution into smaller factors, which we
can learn, store and recombine. This requires conditional independence assumptions,
which are encoded in Probabilistic Graphical Models. Sparser Graphical Networks
thereby correspond to more conditional independence assumptions, which lead to
smaller and more local structures. Although this approach can cause arbitrary as-
sumptions and wrong inference it is often necessary in terms of computation. To
derive queried conditional probability distributions or maximum a posteriori (MAP)
values the recombination of the separated information becomes necessary and the
computational intractabilities return once again. To avoid exponential blow-ups of
calculation special graph structures are used (e.g. Clique Tree Algorithm) or ex-
act inference is dropped (e.g. Loopy Belief Propagation, Sampling Methods). This
introduction to inference with Probabilistic Graphical Models is focused on exact
inference methods and only scratches approximate methods based on sampling or
other iterative models. After introducing factors and queries, the general complexity
of working with highly multivariate distributions is illustrated. As mentioned the
focus of this work lies on exact inference algorithms, namely the Variable Elimina-
tion Algorithm and the Clique Tree Algorithm, which is introduced in a broader
perspective as a Message Passing Algorithm and a Dynamic Programming method.
Only CPD queries and discrete Networks will be discussed. Also important to men-
tion is that this work is strongly based on the book "Probabilistic Graphical Models:
Principles and Techniques" written by D. Koller and N. Friedman.

Contents

1 Factors 1
1.1 Reduction . 1
1.2 Marginalization . 2
1.3 Product . 3
1.4 Factorization . 4

2 Queries 6
2.1 Conditional Probability Density . 6
2.2 Maximum a Posteriori . 7

3 Complexity 8

4 Variable Elimination Algorithm 10
4.1 Variable Elimination . 10
4.2 Graphical Interpretation . 11
4.3 Elimination Ordering . 13
4.4 Operations . 14
4.5 Variable Elimination Algorithm . 15

5 Message Passing 16
5.1 Cluster Graphs . 16
5.2 Message Passing . 17
5.3 Beliefs . 19
5.4 Dynamic Inference . 19
5.5 Difficulties . 20
5.6 Clique Tree Algorithm . 21

6 Sampling 22
6.1 Simple Sampling with Bayesian Networks 22
6.2 Gibbs Sampling with Markov Networks 22

7 Outlook 24

Appendix 25

References 27

1 Factors

To emphasize the underlying calculations during PGM inference algorithms the notion
factor is used, which generalizes distributions to unnormalized measures:

Definition 1. Let X be a set of random variables. We define a factor Φ to be a
function Φ(X) : V al(X) → R+. The set of variables X is called the scope of the factor
and denoted Scope[Φ]. [1, ch. 4.1]

Normalization of a factor (unnormalized measure) gives back a distribution (normal-
ized measure), normally called Gibbs Distribution:

Definition 2. Given a factor Φ(X) we define a Gibbs Distribution P to be a function
P (X) : V al(X) → [0, 1], derived by P (X) = 1

ZΦ(X). The normalization constant
Z =

∑
x∈V al(X)

Φ(x) is called partition function. [1, ch. 4.2]

An example of a factor Φ and the corresponding distribution P is shown in figure 1.

Figure 1: Factor and Gibbs Distribution example.

1.1 Reduction

Factor Reduction is an intermediate step to achieve a conditional probability distribution
(CPD) with given evidence. If some variables of the scope X are given, meaning they
are set to fixed values, the number of factor entries is reduced, causing the name factor
reduction. Normalization of a reduced factor gives back the CPD (example in figure
2) [1, ch. 4.2] :

P (Y|E = e) = 1
Z

Φ(Y,E = e) (1.1)

1

Figure 2: Factor Reduction example.

1.2 Marginalization

Factor Marginalization is an intermediate step to achieve a marginal distribution over
a subset of the scope. For a fixed instantiation of the remaining variables there is one
entry for each value of the variable to eliminate. If all those entries are summed up,
the variable vanishes from the factor. Summing some variables of the scope X out
of the factor means that the number of factor entries is again reduced, leading to a
marginalized factor. ’Calculating the marginal for Y’ or ’Summing out the variables
W = X\Y’ indicate the same procedure. Normalization of a marginalized factor gives
back a marginal distribution (example in figure 3)[1, ch. 9.3]:

P (Y) = 1
Z

∑
W

Φ(Y,W) (1.2)

Further we want to discuss the operations needed to marginalize variable Xj out of
a factor Φ(X). Let dj = |V al(Xj)| be the domain cardinality of variable Xj , Nj =

n∏
i=1

di

be the number of entries of the factor before summing out Xj and d = maxk dk be an
upper bound for the domain cardinalities of all variables. For every entry in the resulting
factor it takes dj − 1 additions to sum out the variable Xj . The number of entries of
the original factor Nj divided by dj gives the number of entries of the resulting factor
leading to the total number of additions [1, ch. 9.4]:

Nadd = dj − 1
dj

n∏
i=1

di < dn (1.3)

2

Figure 3: Factor Marginalization example.

1.3 Product

For every factor in the product there has to exist at least one other factor sharing at
least one same variable, since only then the factor product is defined [1, ch. 4.2]:

Ψ(X,Y,Z) = Φ1(X,Z)Φ2(Y,Z) (1.4)

The number of entries of a factor is a product of the domain cardinalities of all variables
in the scope N =

n∏
i=1

di. Since the scope of the product always increases, the number
of entries also increases: the product of smaller factors leads to a bigger factor. The
example in figure 4 illustrates how the number of entries increases in the generated
factor.

Hence we conclude that a product of many small factors can generate large factors,
which is important to understand the computational cost and the complexity of the
inference task. We further discuss the operations needed to calculate a general factor
product of the type:

P (X) ∝
K∏
k=1

Φk(Dk) (1.5)

For every entry in the resulting factor we have to multiply K values, which takes K − 1
multiplications. Let again dk be the domain cardinality of variable Xk and d = maxk dk
be an upper bound for the domain cardinalities of all variables, then the total number
of necessary operations is [1, ch. 9.4]:

Nprod = (K − 1)
n∏
i=1

di ≤ (K − 1)dn (1.6)

3

Figure 4: Factor Product example.

1.4 Factorization

Factorization serves as the reverse operation of generating a factor product by breaking
down a big factor into a product of smaller factors. In practice we will always start with
smaller factors and try to generate bigger factor products. But the factorization has a
deeper meaning, in fact it corresponds with independence assumptions made over the
variables. To understand this we remember that graphical models are a way to encode
conditional independence assumptions [3] and recapitulate the definitions of graphical
networks. For a Bayesian Network we know that a variable Xk given its parents in the
graph PaGXk is independent of all non-descendant variables [1, ch. 3.2]:

Definition 3. A distribution P (X) : = P (X1, ..., Xn) factorizes over a Bayesian Net-
work G, if P can be expressed as a product:

PG(X1, ..., Xn) =
n∏
k=1

Pk(Xk|PaGXk) as factor=
n∏
k=1

Φk(Xk, Pa
G
Xk

) (1.7)

The graph structure encodes independence assumptions and therefore also a factor-
ization of the bigger joint distribution into smaller conditional probability distributions.
The same thing applies for undirected graphs called Markov Networks [1, ch. 4.2]:

Definition 4. A distribution P (X) factorizes over a Markov Network H, if each

4

subset of variables Dk ⊂ X k ∈ (1, ...,K) builds a complete subgraph (clique) of H:

PH(X1, ..., Xn) = 1
Z

Φ(X1, ..., Xn) ∝
K∏
k=1

Φk(Dk) (1.8)

This means that all scopes Dk have to be fully connected in the Markov Network.
Both graph networks lead to a factorization of a bigger factor into smaller factors. This
feature is mandatory to treat factors over a large scope of variables, as will be discussed
in section Complexity 3. Further basic definitions can be found in section Appendix 7.
We close this chapter with the definition of moralization of a graph, which is also an
important concept for inference [1, ch. 4.5]:

Definition 5. The moral graph M[G] of G is an undirected graph containing edges
between X and Y if there is a directed edge between them or they are both parents of
the same node.

Figure 5 shows a corresponding moral graph of a Bayesian Network. The name moral
stems from the mandatory ’marrying’ of the parents.

N

W

F

R

S

U

N

W

F

R

S

U

Figure 5: Bayesian Network and corresponding Moral Graph

5

2 Queries

Given are all factors or distributions which factorize the joint into K factors over subsets
of variables Dk ⊂ X we get:

P (X) ∝
K∏
k=1

Φk(Dk) (2.1)

Further, the subsets of variables Y,E,W build a partition of the scope: X = Y∪E∪W
and Y ∩E ∩W = ∅.

2.1 Conditional Probability Density

The most common query is about the Conditional Probability Density (CPD) [1,
ch. 9]:

P (Y | E = e) = P (Y,E = e)
P (E = e) ∝ P (Y,E = e) =

∑
W

P (Y,W,E = e) ∝
∑
W

K∏
k=1

Φk(Dk)[E = e]

(2.2)
The query searches the probability distribution of the variables of interest Y (e.g.

diseases, next robot position, etc.) given the evidence E = e (e.g. symptoms, robot
observations, etc.) and ignoring variables W . We conclude that the derivation of the
conditional probability distribution takes four steps:

1. reduction reduce all factors by evidence Φ(Dk)[E = e]

2. multiplication calculate the factor product of the reduced factors

3. addition sum out all other variables
∑
W

4. normalization re-normalize the final factor to achieve a proper CPD

In the Variable Elimination chapter 4 we will discuss what drives the computational
cost answering this query. Immediately noticeable is that a high number of given vari-
ables E lowers and a high number of query variables Y increases the overall cost. Just
compare the cost of calculating the full conditional P (X1|X2:n = e) with calculating
(X2:n|X1 = e), which is "close" to the cost of calculating the joint, since only one vari-
able is given. The ease to calculate the full conditionals will later be used for Gibbs
Sampling 6.2.

6

2.2 Maximum a Posteriori

Another very common query is about the maximum of the CPD P (Y |E = e), called
Maximum a Posteriori (MAP). Important to mention is that efficient algorithms
answering this query avoid calculating the CPD. Y gets set to all non given variables
and optimization methods try to find a maximum instantiation. This optimization leads
to the same result for all strictly monotonic transformations, which is why we use a
logarithmic transformation, which gets rid of the product [1, ch. 13.2]:

ŷ = argmax
y

P (Y = y|E = e) = argmax
y1,...,yp

log
∏

k

Φk(Dk)[E = e] = argmax
y1,...,yp

K∑
k=1

logΦk(Dk)[E = e]

(2.3)
We conclude that the MAP estimation takes three steps:

1. reduction: reduce all factors by evidence Φ(Dk)[E = e]

2. logarithm: calculate the log for all entries

3. search/optimize: find a maximum instantiation of all non-given variables Y

The search task can be tackled with combinatorial optimization techniques. Note
that only instantiations of the CPD get calculated during the search task, but not the
complete CPD. [1, ch. 13.5]

7

3 Complexity

Example 1. Let’s say we want to perform inference over 100 binary variablesX1, ..., X100.
The number of entries/values of the joint distribution over those variables would be 2100.
Further let’s say the storage of one entry needs approximately 1 byte storage. Since
210 = 1024 ∼ 103 this would take 1030 bytes or 1012 exabytes. The estimated storage of
all Google servers in 2015 were 10 exabytes. Therefore 100 billion times the storage of
all Google servers would be needed, just to store all entries of such a joint distribution.

As the scope of a factor gets bigger the number of its entries increases exponentially.
This means that we can almost never calculate or store a factor over a big scope of
variables. Therefore, calculation or storage of joint distributions is almost never possi-
ble. The only way to store the information of a big factor is to find a factorization into
smaller factors. Thus factorization and therefore conditional independence assumptions
are mandatory to work with joints over many variables. Note here that we cannot work
without them. To really break down a big factor, we need as many conditional indepen-
dence assumptions as possible, which in fact is similar to say we need a graph structure
with as little connections as possible. And this is were graphical models come into play,
since they graphically decode the conditional independence assumptions made. Hence,
a sparser graph corresponds to more conditional independence assumptions. [1, ch. 9.1]

The made independence assumptions allow us to learn, store and later recombine
the smaller (local) factors in which our (global) joint distribution factorizes into. At this
point the major problem with inference becomes visible: To answer global queries/inference
tasks it is necessary to recombine the prearranged separated information, which directly
leads us back to the exponential blow-up we came from. We have to find a way to answer
the queries avoiding this exponential blow-up of calculations to which the derivation of
bigger factors lead. Computational complexity theory uses the notion of NP-hard for
problems like that, which (probably) require exponential time to be calculated in worst
case scenarios [1, ch. 9.1].

Summary: Firstly we need sparse graphical models for our variables, meaning as
many conditional independence assumptions as possible, to factorize our big joint distri-
bution into smaller factors, which we can learn, store and later recombine. Note that con-
ditional independence assumptions are necessary but sometimes arbitrary, which could
lead to wrong inference. Secondly we need clever algorithms to recombine bigger factors
to answer global queries. Note that in worst case scenarios even clever algorithms cannot

8

overcome the exponential blow-up to which big factors lead (problems are in worst case
NP-hard).

9

4 Variable Elimination Algorithm

The Variable Elimination algorithm is applicable for Bayes Nets and Markov Nets,
as well as for CPD and MAP queries. The key idea is to sum (argmax) out one variable
after another, which affects only the fraction of factors containing the variable to elimi-
nate. Local structures should only depend on a small number of variables. By buffering
earlier results and reusing them for later calculations, we can avoid generating them
exponentially many times. This procedure can be classified as dynamic programming,
since the local information results are buffered and passed to the next local structures,
to propagate against the desired global conclusion. [1, ch. 9.1]

Note that the usage of factors allows to skip unnecessary normalization of intermedi-
ate results and to treat Bayesian and Markov Network Structures in the same manner.
Remember that without normalization a factor(product) is in general not a distribu-
tion. But in the end every non-negative factor can be normalized to achieve a proper
probability distribution.

4.1 Variable Elimination

We explore the Variable Elimination procedure with the graph used by Schwaferts’ shown
in figure 6. [3]

N P (N |R,W)

W P (W)

F P (F |W)

RP (R)

SP (S|R)

U P (U |N,S, F)

Figure 6: Schwaferts’ Graph

Also we will be interested in the following CDP query:

P (U |F = f1) convenience= P (U |f1) (4.1)

We derive this CPD using the characteristics of Bayesian Networks to factorize the joint
distribution and then applying factor reduction and marginalization:

P (U |f1) ∝
∑

R,W,S,N

P (R)P (W)P (S|R)P (N |R,W)P (f1|W)P (U |S,N, f1)

∝
∑
R,S,N

P (R)P (S|R)P (U |S,N, f1)
∑
W

P (W)P (N |R,W)P (f1|W)︸ ︷︷ ︸ (4.2)

10

Given that the associative property holds in factor products, we can rearrange the factors
and push in the summation over W . By building the factor product of the factors
containing W and summing out W two intermediate factors get generated:

• product W: Ψ1(R,W,N) = P (W)P (N |R,W)P (f1|W)

• sum out W: τ1(R,N) =
∑
W Ψ1(R,W,N)

At this point it is very important to understand, that summing out different variables,
requires the generation of different factor products, which need a differing number of
operations. We should proceed summing out the variable, which needs the least calcu-
lations, which we analyze using equation 1.6:

• product R: Ψ2R(R,S,N) = P (R)P (S|R)τ1(R,N) mltp: 2dRdSdN

• product S: Ψ2S(R,S,N,U) = P (S|R)P (U |S,N, f1) mltp: 1dRdSdNdU

• product N: Ψ2N (R,S,N,U) = τ1(R,N)P (U |S,N, f1) mltp: 1dRdSdNdU

We conclude that if the domain cardinality dU of variable U is bigger then binary (dU >
2), the factor product 2R takes the least multiplications. We continue in the same
manner and after generating three more intermediate factors, we reach the final factor,
which is proportional to the queried CPD:

• sum out R: τ2(S,N) =
∑
R Ψ2(R,S,N)

• product S,N: Ψ3(S,N,U) = P (U |S,N, f1)τ2(S,N)

• sum out S,N: τ3(U) =
∑
S,N

Ψ3(S,N,U) ∝ P (U |f1)

4.2 Graphical Interpretation

In this section we want to see how each Variable Elimination step changes our graph.
The general treatment via factors requires to look at undirected graphs, meaning we
have to take the moral graph of our given Bayesian Network.

11

In figure 7 we see the moral graph on the left and the reduced graph on the right.
Since the term P (f1|W) only depends on W , we add the factor to the node W , without
building the product yet.

N
P (N |R,W)

W P (W)

F P (F |W)

RP (R)

SP (S|R)

U P (U |N,S, F)

N
P (N |R,W)

W P (W)P (f1|W)RP (R)

SP (S|R)

U P (U |N,S, f1)

Figure 7: Moral and Reduced Graph.

In figure 8 we continue to visualize the first product step generating Ψ1(R,W,N) =
P (W)P (N |R,W)P (f1|W) and the first elimination step generating τ1(R,N) =

∑
W Ψ1(R,W,N).

N Ψ1(R,W,N)

WRP (R)

SP (S|R)

U P (U |N,S, f1)

N τ1(R,N)

RP (R)

SP (S|R)

U P (U |N,S, f1)

Figure 8: 1st product and elimination step.

Figure 9 shows the second product step generating Ψ2(R,S,N) = P (R)P (S|R)τ1(R,N),
the second elimination step generating τ2(S,N) =

∑
R Ψ2(R,S,N) and finally the last

product step generating Ψ3(S,N,U) = P (U |S,N, f1)τ2(S,N) from which we can derive
the queried CPD.

N Ψ2(R,S,N)

R

S

U P (U |N,S, f1)

N τ2(S,N)S

U P (U |N,S, f1)

N Ψ3(S,N,U)S

U

Figure 9: 2nd and last product and elimination step.

12

4.3 Elimination Ordering

Starting the elimination with variable N instead of variable W , we have to generate the
following factor product:

Φ1(N,R,W,U, S,N) = P (N |R,W)P (U |S,N, f1) (4.3)

The scope of this factor product includes all non given variables. Like in the preceding
chapter we visualize the factor product in figure 10 on the right site.

N

WR

S

U

N

WR

S

U

Figure 10: Original and Induced Graph by eliminating N first.

The figure shows that the generation of factor Φ1(N,R,W,U, S,N) affords additional
connections in the graph. The resulting graph is called the induced graph of the variable
elimination process eliminating N first. The formal definition is:

Definition 6. Let ⊕ = {Φ1, ...,ΦK} be a set of factors over X = {X1, ..., Xn}, and
α be an elimination ordering for some subset W ⊂ X. The induced graph I⊕,α is an
undirected graph over X, where Xi and Xj are connected by en edge if they both appear
in same intermediate factor Ψ generated by the VE algorithm using α as an elimination
ordering. [1, ch. 9.4]

Moreover, the intermediate factors of a variable elimination process posses some
important properties[1, ch. 9.4]:

Theorem 1. Let I⊕,α be an induced graph of a set of factors ⊕ and some elimination
ordering α. Then:

• The scope of every generated factor Ψ is a clique in I⊕,α.

• Every maximal clique in I⊕,α is the scope of some Ψ.

The first statement comes due to the property that all variables in the scope of a
factor must be a fully connected subgraph in the corresponding Markov Network. The
generation of the factor product Φ1(N,R,W,U, S,N) immediately required that all those

13

variables get fully connected in the induced graph. The second statement means that if
a very large clique in the induced graph appears, then this clique will at some point be
the scope of an intermediate factor during the variable elimination process. We already
know that the large factors are the major cause for a blow-up of calculations. This leads
us to the definition of the width of an induced graph [1, ch. 9.4]:

Definition 7. We define the width of a graph to be the number of nodes in the largest
clique in the graph minus 1. The induced width ωK,α of an ordering α relative to a
graph K is the width of the graph I⊕,α induced by applying VE to K using elimination
ordering α.[1, ch. 9.4]

A large induced width ω of an elimination ordering α, implies the generation of a
large factor during variable elimination, and therefore indicates a blow-up of calculations.

4.4 Operations

In every variable elimination step we had to generate a factor product and eliminate a
variable. Let Ψj be the generated factor and Xij the eliminated variable at elimination
step j. We set Kj to the number of factors to generate the Ψj , Nj to the number of
entries in Ψj and Sj to the number of variables in the scope of Ψj . Further we set
dij = |V al(Xij)| to be the domain cardinality of variable Xij . Using the equations 1.3
and 1.6 and assuming m elimination steps we conclude [1, ch. 9.1]:

Ntotal =
m∑
j=1

(
dij − 1
dij

Nj + (Kj − 1)Nj

)
(4.4)

We continue to estimate an upper bound for this value. Setting S = maxj Sj to
the largest number of variables in an intermediate factor (corresponds to width+1) and
d = maxi di to the highest domain cardinality of all variables we derive ∀j ∈ {1, ...,m} :
Nj ≤ dS and conclude [1, ch. 9.1]:

Ntotal < dS
m∑
j=1

Kj = dS(K +m) < 2ndS → O(ndS) (4.5)

For the last estimation we assumed that the initial number of factors K ≤ n (always
true for Bayesian Networks) and the number of elimination steps m < n.

The total number of operations increases exponential in d and S. Since S can be
associated with the induced width ωK,α of an elimination ordering α, we associate the

14

computational complexity with an elimination ordering α. Finding good Eliminations
Orderings is therefore very important for the inference performance, but also a NP-
complete problem [1, ch. 9.4]. Nevertheless search algorithms using simple heuristics
can find a good Elimination Ordering in practice. Those heuristics define a cost, which
is evaluated for each node. The minimum node will be picked and eliminated and the
next node will be searched. Common costs to reduce are[1, ch. 9.4]:

1. Min-neighbors: Cost is the number of neighbors.

2. Min-weight: Cost is the domain cardinality of its neighbors.

3. Min-fill: Cost is the number of edges that need to be added to the graph due to
its elimination.

4. Weighted-min-fill: Cost is the sum of domain cardinalities of the edges that
need to be added to the graph due to its elimination.

4.5 Variable Elimination Algorithm

As a summary we write the Variable Elimination Algorithm for CPD queries in algo-
rithmic form [1, ch. 9.3]:

Algorithm 1 Variable Elimination for CPD
1: reduce initial factors by evidence E = e→ ⊕ := {Φ1, ...,Φm} set of reduced factors
2: search elimination ordering using heuristics → α
3: for all Xα(k) ∈W do
4: product Ψk =

∏
Φi∈⊕:Xα(k)∈Scope[Φi] Φi

5: sum τk =
∑
Xα(k)

Ψk

6: update τk := Φm+k ∈ ⊕
7: end for
8: renormalize the final factor τK(Y)→ proper CDP P (Y|E = e)

15

5 Message Passing

5.1 Cluster Graphs

The fundamental structure used for Message Passing algorithms is the cluster graph.
Beyond that certain properties need to hold to ease the message passing process. We
start stating the basic definitions and explain them in advance with an example:

Definition 8. A Cluster Graph T is an undirected graph.
Each node is associated with a cluster Ci ⊆ X.
Each edge is associated with a sepset Si,j ⊇ Ci ∩Cj.
Family-preserving: Each factor Φk ∈ ⊕ must be associated with a cluster Ck, such that
Scope[Φk] ⊇ Ck.[1, ch. 10.1]

Definition 9. Running Intersection Property (RIP): If any X ∈ Ci and X ∈ Cj,
then there exists an unique path from Ci to Cj containing X in every sepset and cluster
on this path in the graph.[1, ch. 10.1]

Definition 10. Clique Tree: A Cluster Graph without loops, that satisfies the RIP.[1,
ch. 10.1]

Theorem 2. A Variable Elimination process induces a clique tree.[1, ch. 10.1]

Fortunately, we can use our well-known example out of the variable elimination
chapter, since the above theorem states that the VE process in chapter 4 induces a
clique tree. Figure 11 shows how we can extract the clique tree out of the VE process
example.

Figure 11: From Variable Elimination to Cluster Graphs.

The scope of every generated factor product builds a cluster and the scope of every
marginal factor after elimination builds a sepset. Note that the scopes and not the

16

generated factors themselves are associated with a cluster! The other properties are
easy to see: the graph is undirected, without loop and satisfying the RIP. An edge
between the top and the bottom node, containing a sepset {N}, would violate the RIP,
since there would exist two paths containing N between each cluster. It would also
establish a loop, which violates the tree structure. Family Preservation is shown in
figure 12, where each factor of the original factorized joint is associated with a cluster
containing all the variables of this factor’s scope. Do not confuse the associated factor
products with the ones generated during VE!

R,W,N

Ψ1(R,W,N) = P (W)P (N |R,W)P (f1|W)

R,N R,S,N

Ψ2(R,S) = P (R)P (S|R)

S,N S,N,U

Ψ3(S,N,U) = P (U |S,N, f1)

Figure 12: Family Preservation.

The products of the associated factors Ψ1(R,W,N), Ψ2(R,S) and Ψ3(S,N,U) are
called initial potentials:

Definition 11. Recall that each factor Φ ∈ ⊕ is assigned to some clique α(Φ). We
define the initial potential of Cj to be [1, ch. 10.2]:

Ψj(Cj) =
∏

Φ:α(Φ)=j Φ.

5.2 Message Passing

The initial potentials know something about the variables in the cluster. To formalize
how two neighboring initial potentials communicate their knowledge over the variables
they share in the sepset we define messages:

Definition 12. The message from Ci to another cluster Cj is computed using the
following sum-product message passing computation [1, ch. 10.2]:

δi→j(Si,j) =
∑

Ci−Si,j

Ψi

∏
k∈(Ni−j)

δk→i (5.1)

Cluster Ci sends a message to cluster Cj concerning the variables in the sepset Si,j ,
by combining the information of all incoming messages, except the one coming from Cj ,
and his initial potential. Since they can only talk about variables in their sepset all
other variables are summed out. At this point it is very important to recognize that
messages are defined through messages. Therefore, it is obvious that loops in the cluster
graph structure, lead to loops in the message definitions, which means that they can only

17

converge to approximate values but never to exact ones. A clique tree on the other hand
has endings where messages converge directly, since the sole incoming message comes
from the cluster it is sending to and is therefore ignored.

In figure 13 we see all messages for our example clique tree. The messages starting
from the tails δ1→2 =

∑
W Ψ1 and δ3→2 =

∑
U Ψ3 converge immediately, since they are

independent from incoming messages. In the next message passing step the messages
δ2→1 and δ2→3 converge also, since the only messages they depend on converged as well.

R,W,N

Ψ1(R,W,N) = P (W)P (N |R,W)P (f1|W)

R,N

δ1→2 = ∑
W Ψ1

R,S,N

Ψ2(R,S) = P (R)P (S|R)

S,N

δ3→2 = ∑
U Ψ3

S,N,U

Ψ3(S,N,U) = P (U |S,N, f1)

δ2→1 = ∑
S Ψ2δ3→2

δ2→3 = ∑
R Ψ2δ1→2

Figure 13: Message Passing.

We can generalize the Message Passing for Clique Trees:

1. pick an arbitrary root of the clique tree

2. starting from the tails pass all messages upwards to the root

3. continuing at the root to pass all messages back to the tails

After the upward and the downward pass all messages have converged. Note that this
convergence depends on the tree like structure! Due to this special property of clique
trees they are widely used, which lead to the particular name ’Clique Tree Algorithm’.
[1, ch. 10.2]

The Message Passing of Loopy Cluster Graphs forms an iterative model, since
a message passed through a loop will end up updating itself again and again:

1. initialize all messages to be 1

2. iterate over the message passing

3. stop when the approximate convergence is satisfying enough

In the next chapter, we will see that not only the messages get updated, but also the
information a node has over the variables in its cluster, which is called belief. Ap-
proximate and iterative algorithms using Message Passing are also called ’Loopy Belief
Propagation’. [1, ch. 10.2]

18

5.3 Beliefs

In contrast to the Variable Elimination Algorithm, Message Passing Algorithms don’t
answer queries directly, but try to build a basis for dynamic programming. The goal is
to achieve intermediate results, which make it easier to answer many different types of
queries. Those results include the hopefully converged messages and the so called beliefs,
for which it can be shown that they correspond exactly (clique trees) or approximately
(loopy) to the marginal distribution over the variables in the cluster.

Definition 13. A belief is defined as follows [1, ch. 10.2]:

βi(Ci) = Ψi

∏
k∈Ni

δk→i (5.2)

We further define the term calibration, which presents the state of convergence [1,
ch. 10.2]:

Definition 14. Two adjacent cliques Ci and Cj are said to be calibrated if they agree
on their belief over their sepset:

∑
Ci−Si,j

βi(Ci) =
∑

Cj−Si,j

βj(Cj) (5.3)

Since changing messages cause changing beliefs the Message Passing process is also
called Belief Propagation. Belief Propagation with clique trees is exact inference. After
propagating the exactly calculated leaf messages thorough the tree the exact marginals
are achieved everywhere. The cost for the upward and downward pass of messages in
the Clique Tree Algorithm barely matches with the same computational performance
necessary for two variable elimination algorithm runs. [1, ch. 10.2]

5.4 Dynamic Inference

The major advantage of Message Passing Algorithms is the dynamic programming con-
cept. After achieving the approximate or exact marginals we can answer all kinds of
queries. Thereby, we differentiate two cases:

Case 1: Evidence E = e and Y are in the same cluster: Since E and Y are in the
same cluster, we can just use the generated marginal distribution. We reduce the distri-
bution by evidence E, sum out all needless variables and re-normalize.

19

Case 2: Evidence E = e and Y are in different cliques. In this case we have to
use Incremental updates! The new evidence changes the training potentials, namely
the approximate or exact marginals. These changes in potentials lead to changes in
the messages. All updated messages have to be passed to the node containing the
query variables Y . In the end we achieve a new belief and therefore a new marginal
distribution containing Y with respect to the given evidence E = e. Summing out all
needless variables we can again find the queried CPD.

5.5 Difficulties

Example 2. As an example we take a n x n Markov Network grid which we want to
break down into a clique tree with a simulated variable elimination procedure. Without
using search methods to find a good elimination ordering, we see that every transforma-
tion into a clique tree requires to build a clique with at least n variables, to satisfy the
running intersection property. A factor over n variables suffices to blowup the compu-
tational cost to exponential scale!

We conclude that in some cases we cannot find a clique tree without having to
calculate large intractable factors.[1, ch. 10.4] That is when approximate methods like
Loopy Belief Propagation come into play, since they don’t require the generation of a tree
structure. The problems for Loopy Belief Propagation are the mentioned uncertainty
about convergence of the algorithm and the approximate results. Also, there are only
heuristic methods to check whether convergence has not been achieved, but not if it has.
Nevertheless, Loopy Belief Propagation is widely used for the so called turbo encoders,
which try to decode and encode messages for better transition. The application of Loopy
Belief Propagation was a big success in this area and shows that it can work pretty well
in practice. [1, ch. 11.3]

20

5.6 Clique Tree Algorithm

As a summary we write the Clique Tree Algorithm in algorithmic form [1, ch. 10.3]:

Algorithm 2 Clique Tree Algorithm
1: simulate VE and search for good α → clique tree.
2: product initial potentials: Ψi(Ci) =

∏
k:α(k)=i Φk.

3: update messages: δi→j(Si,j) =
∑

Ci−Si,j
Ψi
∏
k∈(Ni−j) δk→i.

4: upward pass all messages from leafs to root.
5: downward pass all messages from root to leafs.
6: calculate beliefs: βi(Ci) = Ψi

∏
k∈Ni δk→i.

7: re-normalize beliefs to get marginal distributions.
8: store tree structure and marginal distributions.

21

6 Sampling

6.1 Simple Sampling with Bayesian Networks

N

W

F

R

S

U

A Bayesian Network Graph G enables a simple sampling procedure. Since Bayesian
Networks are directed we can start sampling the roots of the network with the marginal
distributions. The parents of the subsequent descendants are now given, so we can sam-
ple those descendants as well using the CPDs. The so sampled descendants will be the
parents for the next layer, and so on. Step by step we sample through those CPDs of
which the parents have already been sampled. Notice that such a sampling procedure
is not feasible with Markov Networks since we have no parental nodes as roots to start
from! [1, ch. 12.1]

How can we use the generated samples to estimate e.g. P (Y = y|E = e)? Just by
throwing away all samples with E 6= e and finally calculating the fraction of remaining
samples with Y = y. This method is called rejection sampling. The computation
of this method increases with the number of variables given in the evidence, since the
accepted fraction gets smaller and smaller, it even decreases exponentially. [1, ch. 12.2]

6.2 Gibbs Sampling with Markov Networks

Gibbs Sampling is a special Markov Chain Monte Carlo method. Since we can’t just
sample from the roots to the leafs like in the Bayesian Network case, we start initial-
izing random values for all variables. With those random values it is easy to calculate
the full conditionals for every variable P (Xi|X−i). Note that except of one variable
all other variables are given and therefore very few calculations are needed. We now
use the calculated full CPDs to sample a next instantiation, and so on. Every sampled

N

W

F

R

S

U

22

instantiation updates the full CPDs and the updated full CPDs are used to generate a
new sample. This loop can converge to the stationary distribution we are looking for
and after convergence it generates samples from the real underlying distribution. But
neither can we prove nor guarantee convergence. [1, ch. 12.3]

Other general problems of sampling are [1, ch. 12]:

• the lower the probabilities we want to estimate the more samples we need (Chernoff
Bound)

• adjacent samples maybe are not i.i.d.

23

7 Outlook

The field of Probabilistic Graphical Models is still emerging. Further research tries:

• choosing more and better independence assumptions to achieve more sparse graphs

• finding better heuristics to find good elimination orderings and clique trees

• finding methods to improve and secure the convergence of approximate methods
like Sampling and Loopy Belief Propagation

Also worth mentioning is the area of hybrid and continuous networks [4], which require
and enable completely different inference methods, and the difficulty of inference with
credal networks [5].

24

Appendix

Graph Properties

Definition 15. A graph K is a data structure containing nodes X representing variables
X1, ..., Xn and edges E containing relationships between variables with types like:

• undirected Xi −Xj (Xi and Xj are neighbors)

• directed Xi → Xj (Xi is parent and Xj is child)

• connected Xi
 Xj (unspecified).[1, ch. 2.1]

Definition 16. We say that variables X1, ..., Xk in the graph K(X , E) form a:

• path if, ∀i ∈ {1, ..., k − 1} we have either Xi → Xi+1 or Xi −Xi+1

• directed path if they form a path for which ∃i : Xi → Xi+1

• cycle if they form a directed path for which X1 = Xk

• trail if, ∀i ∈ {1, ..., k − 1} we have Xi
 Xi+1

• loop if they form a trail for which X1 = Xk.[1, ch. 2.1]

Definition 17. In a directed graph K = G all edges are directed.
A directed acyclic graph DAG contains no cycles.
In an undirected graph K = H all edges are undirected.
An undirected singly graph (tree) contains no loops.
The undirected version of graph K = (X , ξ) is a graphH = (X , ξ′) where ξ′ = {X−Y :
X
 Y ∈ ξ}.
A graph K is chordal if the longest minimal loop in its undirected version H′ is a
triangle. [1, ch. 2.1]

Definition 18. A subgraph K[X](X, E ′) of graph K(X , E) with X ⊂ X , where the
subgraph edges are defined E ′ = {X
 Y ∈ E|X,Y ∈ X}. A subgraph over X ⊂ X is
complete if every two nodes in X are connected by some edge. The set X is often called
a clique; we say that a clique X is maximal if for any superset of nodes Y ⊃ X, Y is
not a clique. [1, ch. 2.1]

25

Factor Properties

Factor products are commutative and associative:

Φ1Φ2 = Φ2Φ1 (7.1)

(Φ1Φ2)Φ3 = Φ1(Φ2Φ3) (7.2)

Marginalization rules:

∑
X

∑
Y

Φ =
∑
Y

∑
X

Φ (7.3)

X 6∈ Scope[Φ1]→
∑
X

(Φ1Φ2) = Φ1
∑
X

Φ2 (7.4)

26

References

[1] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Tech-
niques, MIT Press 2009.

[2] D. Koller, Probabilistic Graphical Models, Coursera Course 2013.

[3] P. Schwaferts, Einfuehrung in die diskreten Bayes-und Kredal-Netze, LMU München
PGM Seminar 2015-2016.

[4] J. Ficek, Introduction to continuous and hybrid Bayesian networks, LMU München
PGM Seminar 2015-2016.

[5] T. Steinherr, Inferenz in Credalnetzen, LMU München PGM Seminar 2015-2016.

27

	Factors
	Reduction
	Marginalization
	Product
	Factorization

	Queries
	Conditional Probability Density
	Maximum a Posteriori

	Complexity
	Variable Elimination Algorithm
	Variable Elimination
	Graphical Interpretation
	Elimination Ordering
	Operations
	Variable Elimination Algorithm

	Message Passing
	Cluster Graphs
	Message Passing
	Beliefs
	Dynamic Inference
	Difficulties
	Clique Tree Algorithm

	Sampling
	Simple Sampling with Bayesian Networks
	Gibbs Sampling with Markov Networks

	Outlook
	Appendix
	References

