INFERENCE

Seminar: Probabilistic Graphical Models

Johannes Langer
January 16, 2016
Department of Statistics

TABLE OF CONTENTS

1. Factors
2. Queries
3. Complexity
4. Variable Elimination
5. Message Passing
6. Sampling

FACTORS

Definition A distribution $P(\mathcal{X}):=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a a_{X_{k}}^{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, P a_{X_{k}}^{\mathcal{G}}\right) \tag{1}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X}):=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a{\underset{X}{X}}^{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, \operatorname{Pa}_{X_{k}}^{\mathcal{G}}\right) \tag{1}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$ factorizes over a Markov Network \mathcal{H}, if each $\mathbf{D}_{\mathrm{k}} \subset \mathcal{X} k \in(1, \ldots K)$ is a complete subgraph (clique) of \mathcal{H} :

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{H}}=\frac{1}{Z} \Phi\left(X_{1}, \ldots, X_{n}\right) \propto \prod_{k=1}^{K} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right) \tag{2}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$: $=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a{\underset{X}{X}}^{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, \operatorname{Pa}_{X_{k}}^{\mathcal{G}}\right) \tag{1}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$ factorizes over a Markov Network \mathcal{H}, if each $\mathbf{D}_{\mathrm{k}} \subset \mathcal{X} k \in(1, \ldots K)$ is a complete subgraph (clique) of \mathcal{H} :

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{H}}=\frac{1}{Z} \Phi\left(X_{1}, \ldots, X_{n}\right) \propto \prod_{k=1}^{K} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right) \tag{2}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X}):=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a{\underset{X}{X}}^{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, \operatorname{Pa}{\underset{X}{X}}_{k}^{\mathcal{G}}\right) \tag{1}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$ factorizes over a Markov Network \mathcal{H}, if each $\mathbf{D}_{\mathrm{k}} \subset \mathcal{X} k \in(1, \ldots K)$ is a complete subgraph (clique) of \mathcal{H} :

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{H}}=\frac{1}{Z} \Phi\left(X_{1}, \ldots, X_{n}\right) \propto \prod_{k=1}^{K} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right) \tag{2}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X}):=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a \underset{X_{k}}{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, \operatorname{Pa}{\underset{X}{X}}_{k}^{\mathcal{G}}\right) \tag{3}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$ factorizes over a Markov Network \mathcal{H}, if each $\mathbf{D}_{\mathrm{k}} \subset \mathcal{X} k \in(1, \ldots K)$ is a complete subgraph (clique) of \mathcal{H} :

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{H}}=\frac{1}{Z} \Phi\left(X_{1}, \ldots, X_{n}\right) \propto \prod_{k=1}^{K} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right) \tag{4}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X}):=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a \underset{X_{k}}{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, \operatorname{Pa}{\underset{X}{X}}_{k}^{\mathcal{G}}\right) \tag{5}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$ factorizes over a Markov Network \mathcal{H}, if each $\mathbf{D}_{\mathrm{k}} \subset \mathcal{X} k \in(1, \ldots K)$ is a complete subgraph (clique) of \mathcal{H} :

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{H}}=\frac{1}{Z} \Phi\left(X_{1}, \ldots, X_{n}\right) \propto \prod_{k=1}^{K} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right) \tag{6}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X}):=P\left(X_{1}, \ldots, X_{n}\right)$ factorizes over a Bayesian Network \mathcal{G}, if P can be expressed as a product:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{G}}=\prod_{k=1}^{n} P_{k}\left(X_{k} \mid P a{\underset{X}{k}}^{\mathcal{G}}\right) \stackrel{\text { as factor }}{=} \prod_{k=1}^{n} \Phi_{k}\left(X_{k}, \operatorname{Pa}{\underset{X}{X}}_{k}^{\mathcal{G}}\right) \tag{5}
\end{equation*}
$$

Definition A distribution $P(\mathcal{X})$ factorizes over a Markov Network \mathcal{H}, if each $\mathbf{D}_{\mathrm{k}} \subset \mathcal{X} k \in(1, \ldots K)$ is a complete subgraph (clique) of \mathcal{H} :

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)_{\mathcal{H}}=\frac{1}{Z} \Phi\left(X_{1}, \ldots, X_{n}\right) \propto \prod_{k=1}^{K} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right) \tag{6}
\end{equation*}
$$

Definition The moral graph $\mathcal{M}[G]$ of \mathcal{G} is an undirected graph containing edges between X and Y if there is a directed edge between them or they are both parents of the same node.

FACTOR - NORMALIZATION

factor
$\Phi(\mathbf{X}): \mathbf{X} \rightarrow \mathbb{R}^{+}$
i.g. unnormalized measure

Table 1:	$\Phi(A, B)$
entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

FACTOR - NORMALIZATION

factor
$\Phi(\mathbf{X}): \mathbf{X} \rightarrow \mathbb{R}^{+}$
i.g. unnormalized measure
distribution

$$
P(\mathbf{X}): \mathbf{X} \rightarrow[0,1]
$$

normalized measure

Table 2: $\quad \frac{1}{Z} \Phi(A, B)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

FACTOR - NORMALIZATION

factor
$\Phi(\mathbf{X}): \mathbf{X} \rightarrow \mathbb{R}^{+}$
i.g. unnormalized measure

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

distribution

$$
P(\mathbf{X}): \mathbf{X} \rightarrow[0,1]
$$

normalized measure

Table 2: $\quad \frac{1}{Z} \Phi(A, B)$

entry	value
a_{0}, b_{0}	$3 \cdot 10^{-3}$
a_{0}, b_{1}	$1 \cdot 10^{-4}$
a_{1}, b_{0}	$1 \cdot 10^{-3}$
a_{1}, b_{1}	0.9957

FACTOR - NORMALIZATION

factor
$\Phi(\mathbf{X}): \mathbf{X} \rightarrow \mathbb{R}^{+}$
i.g. unnormalized measure

Table 1:	$\Phi(A, B)$
entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

distribution

$$
P(\mathbf{X}): \mathbf{X} \rightarrow[0,1]
$$

normalized measure

Table 2: $\quad \frac{1}{Z} \Phi(A, B)$

entry	value
a_{0}, b_{0}	$3 \cdot 10^{-3}$
a_{0}, b_{1}	$1 \cdot 10^{-4}$
a_{1}, b_{0}	$1 \cdot 10^{-3}$
a_{1}, b_{1}	0.9957

P is called Gibbs distribution and $Z=\sum_{x \in \operatorname{Val}(\mathbf{X})} \Phi(\mathbf{x})$ partition function.

FACTOR - REDUCTION

factor
$\Phi(\mathbf{Y}, \mathbf{E})$
i.g. unnormalized

reduced factor
$\Phi(\mathbf{Y}, \mathbf{E}=\mathbf{e})$
i.g. unnormalized

Table 3: $\Phi(A, B) \quad$ Table 4: $\Phi\left(A, B=b_{0}\right)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

FACTOR - REDUCTION

factor
$\Phi(\mathbf{Y}, \mathbf{E})$
i.g. unnormalized
reduced factor
$\Phi(\mathbf{Y}, \mathbf{E}=\mathbf{e})$
i.g. unnormalized

Table 3: $\Phi(A, B) \quad$ Table 4: $\Phi\left(A, B=b_{0}\right)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

entry	value
a_{0}, b_{0}	π
a_{1}, b_{0}	1

FACTOR - REDUCTION

factor
$\Phi(\mathbf{Y}, \mathbf{E})$
i.g. unnormalized

Table 3: $\quad \Phi(A, B)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

Table 4: $\quad \Phi\left(A, B=b_{0}\right)$

entry	value
a_{0}, b_{0}	π
a_{1}, b_{0}	1

reduced factor
$\Phi(\mathbf{Y}, \mathbf{E}=\mathbf{e})$
i.g. unnormalized
conditional distribution
$P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
normalized

Table 5: $\quad \frac{1}{Z} \Phi\left(A, B=b_{0}\right)$

entry	value
a_{0}, b_{0}	0.76
a_{1}, b_{0}	0.24

FACTOR - MARGINALIZATION

factor
$\Phi(\mathbf{Y}, \mathbf{E})$
i.g. unnormalized

Table 6: $\quad \Phi(A, B)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

reduced factor
$\Psi(\mathbf{Y})=\sum_{\mathrm{W}} \Phi(\mathbf{Y}, \mathbf{W})$
i.g. unnormalized

Table 7: $\quad \sum_{b \in \operatorname{Val}(B)} \Phi(A, B=b)$

FACTOR - MARGINALIZATION

factor
$\Phi(\mathbf{Y}, \mathbf{E})$
i.g. unnormalized

Table 6: $\quad \Phi(A, B)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

reduced factor
$\Psi(\mathbf{Y})=\sum_{\mathrm{W}} \Phi(\mathbf{Y}, \mathbf{W})$
i.g. unnormalized

Table 7: $\quad \sum_{b \in \operatorname{Val}(B)} \Phi(A, B=b)$

entry	value
a_{0}	$\pi+0.1$
a_{1}	$1000+1$

FACTOR - MARGINALIZATION

factor
$\Phi(\mathbf{Y}, \mathbf{E})$
i.g. unnormalized

Table 6: $\Phi(A, B)$

entry	value
a_{0}, b_{0}	π
a_{0}, b_{1}	0.1
a_{1}, b_{0}	1
a_{1}, b_{1}	1000

reduced factor
$\Psi(\mathbf{Y})=\sum_{\mathrm{W}} \Phi(\mathbf{Y}, \mathbf{W})$
i.g. unnormalized

Table 7: $\quad \sum_{b \in \operatorname{Val}(B)} \Phi(A, B=b)$

entry	value
a_{0}	$\pi+0.1$
a_{1}	$1000+1$

marginal distribution $P(\mathbf{Y})$
normalized

Table 8: $\quad \frac{1}{Z} \Psi(A)$

entry	value
a_{0}	$3 \cdot 10^{-3}$
a_{1}	0.997

FACTOR - PRODUCT

$\Phi_{1}(A, C)$	
entry	value
a_{0}, c_{0}	1
a_{0}, c_{1}	2
a_{1}, c_{0}	3
a_{1}, c_{1}	4
$\Phi_{2}(B, C)$	
entry	value
b_{0}, c_{0}	4
b_{0}, c_{1}	3
b_{1}, c_{0}	2
b_{1}, c_{1}	1

FACTOR - PRODUCT

$$
\Phi_{1}(A, C)
$$

entry	value
a_{0}, c_{0}	1
a_{0}, c_{1}	2
a_{1}, c_{0}	3
a_{1}, c_{1}	4

$\Phi_{2}(B, C)$

entry	value
b_{0}, c_{0}	4
b_{0}, c_{1}	3
b_{1}, c_{0}	2
b_{1}, c_{1}	1

factor product $\Psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$
$=\Phi_{1}(\mathbf{X}, \mathbf{Z}) \Phi_{2}(\mathbf{Y}, \mathbf{Z})$

Table 9: $\quad \Psi(A, B, C)$

entry	value
a_{0}, b_{0}, c_{0}	$1 \cdot 4$
a_{0}, b_{0}, c_{1}	$2 \cdot 3$
a_{0}, b_{1}, c_{0}	$1 \cdot 2$
a_{0}, b_{1}, c_{1}	$2 \cdot 1$
a_{1}, b_{0}, c_{0}	$3 \cdot 4$
a_{1}, b_{0}, c_{1}	$4 \cdot 3$
a_{1}, b_{1}, c_{0}	$3 \cdot 2$
a_{1}, b_{1}, c_{1}	$4 \cdot 1$

FACTOR - PRODUCT

$\Phi_{1}(A, C)$
factor product $\Psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$
$=\Phi_{1}(\mathbf{X}, \mathbf{Z}) \Phi_{2}(\mathbf{Y}, \mathbf{Z})$

Table 9: $\quad \Psi(A, B, C)$

entry	value
a_{0}, b_{0}, c_{0}	$1 \cdot 4$
a_{0}, b_{0}, c_{1}	$2 \cdot 3$
a_{0}, b_{1}, c_{0}	$1 \cdot 2$
a_{0}, b_{1}, c_{1}	$2 \cdot 1$
a_{1}, b_{0}, c_{0}	$3 \cdot 4$
a_{1}, b_{0}, c_{1}	$4 \cdot 3$
a_{1}, b_{1}, c_{0}	$3 \cdot 2$
a_{1}, b_{1}, c_{1}	$4 \cdot 1$

joint distribution
$P(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$

Table 10: $\quad P(A, B, C)$

entry	value
a_{0}, b_{0}, c_{0}	0.083
a_{0}, b_{0}, c_{1}	0.125
a_{0}, b_{1}, c_{0}	0.042
a_{0}, b_{1}, c_{1}	0.042
a_{1}, b_{0}, c_{0}	0.250
a_{1}, b_{0}, c_{1}	0.250
a_{1}, b_{1}, c_{0}	0.125
a_{1}, b_{1}, c_{1}	0.083

QUERIES

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})}$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathbf{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e})$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathbf{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)[\mathbf{E}=\mathbf{e}]$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathrm{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]$
steps: (a) reduce (b) product (c) sum out (d) normalize

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathrm{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]$
steps: (a) reduce (b) product (c) sum out (d) normalize
maximum a posteriori (MAP): $\hat{\mathbf{y}}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{Y}=\mathbf{y} \mid \mathbf{E}=\mathbf{e})$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathrm{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]$
steps: (a) reduce (b) product (c) sum out (d) normalize
maximum a posteriori (MAP): $\hat{\mathbf{y}}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{Y}=\mathbf{y} \mid \mathbf{E}=\mathbf{e})$
\rightarrow

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathrm{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]$
steps: (a) reduce (b) product (c) sum out (d) normalize
maximum a posteriori (MAP): $\hat{\mathbf{y}}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{Y}=\mathbf{y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow=\underset{y_{1}, \ldots, y_{p}}{\operatorname{argmax}} \log \left(\prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]\right)$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathrm{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]$
steps: (a) reduce (b) product (c) sum out (d) normalize
maximum a posteriori (MAP): $\hat{\mathbf{y}}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{Y}=\mathbf{y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow=\underset{y_{1}, \ldots, y_{p}}{\operatorname{argmax}} \log \left(\prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]\right)=\underset{y_{1}, \ldots, y_{p}}{\operatorname{argmax}} \sum_{k} \log \left(\Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]\right)$

QUERIES - WHAT DO WE WANT TO KNOW?

given are all factors/distributions to factorize the joint $P(\mathcal{X}) \propto \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathbf{k}}\right)$
conditional probability density (CPD): $P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow \frac{P(\mathbf{Y}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} \propto P(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\sum_{\mathrm{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E}=\mathbf{e}) \propto \sum_{\mathrm{W}} \prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]$
steps: (a) reduce (b) product (c) sum out (d) normalize
maximum a posteriori (MAP): $\hat{\mathbf{y}}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{Y}=\mathbf{y} \mid \mathbf{E}=\mathbf{e})$
$\rightarrow=\underset{y_{1}, \ldots, y_{p}}{\operatorname{argmax}} \log \left(\prod_{k} \Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]\right)=\underset{y_{1}, \ldots, y_{p}}{\operatorname{argmax}} \sum_{k} \log \left(\Phi_{k}\left(\mathbf{D}_{\mathrm{k}}\right)[\mathbf{E}=\mathbf{e}]\right)$
steps: (a) reduce (b) search/optimize

COMPLEXITY

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution:

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution: 2^{100}

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution: 2^{100}
- storage of one entry approximately 1 byte
- $2^{10}=1024 \sim 10^{3}$

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution: 2^{100}
- storage of one entry approximately 1 byte
- $2^{10}=1024 \sim 10^{3} \rightarrow 10^{30}$ bytes or 10^{12} exabytes

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution: 2^{100}
- storage of one entry approximately 1 byte
- $2^{10}=1024 \sim 10^{3} \rightarrow 10^{30}$ bytes or 10^{12} exabytes
- estimated storage of all google servers in 2015 were 10 exabytes

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution: 2^{100}
- storage of one entry approximately 1 byte
- $2^{10}=1024 \sim 10^{3} \rightarrow 10^{30}$ bytes or 10^{12} exabytes
- estimated storage of all google servers in 2015 were 10 exabytes

100 billion times the storage of all google servers

COMPLEXITY - WHY NOT 'JUST' CALCULATE?

- 100 binary variables X_{1}, \ldots, X_{100}
- number of entries/values of the joint distribution: 2^{100}
- storage of one entry approximately 1 byte
- $2^{10}=1024 \sim 10^{3} \rightarrow 10^{30}$ bytes or 10^{12} exabytes
- estimated storage of all google servers in 2015 were 10 exabytes

100 billion times the storage of all google servers, just to store all entries.

COMPLEXITY - CONCLUSION

We can almost never calculate:

- the joint distribution factor product!

COMPLEXITY - CONCLUSION

We can almost never calculate:

- the joint distribution factor product!
- factor products over a bigger number of variables!

COMPLEXITY - CONCLUSION

We can almost never calculate:

- the joint distribution factor product!
- factor products over a bigger number of variables!

COMPLEXITY - CONCLUSION

We can almost never calculate:

- the joint distribution factor product!
- factor products over a bigger number of variables!

keep it local

What does effectively reduce variables per factor?

COMPLEXITY - CONCLUSION

We can almost never calculate:

- the joint distribution factor product!
- factor products over a bigger number of variables!

keep it local

What does effectively reduce variables per factor?

conditional independence

COMPLEXITY - CONCLUSION

We can almost never calculate:

- the joint distribution factor product!
- factor products over a bigger number of variables!

keep it local

What does effectively reduce variables per factor?

conditional independence

clever algorithms

VARIABLE ELIMINATION

VARIABLE ELIMINATION - SCHWAFERTS' GRAPH

Figure 1: Schwaferts' Graph

VARIABLE ELIMINATION - SCHWAFERTS' GRAPH

Figure 1: Schwaferts' Graph

VARIABLE ELIMINATION - SCHWAFERTS' GRAPH

Figure 1: Schwaferts' Graph

$$
P\left(U \mid f_{1}\right) \propto \sum_{R, W, S, N} P(R) P(W) P(S \mid R) P(N \mid R, W) P\left(f_{1} \mid W\right) P\left(U \mid S, N, f_{1}\right)
$$

VARIABLE ELIMINATION - SCHWAFERTS' GRAPH

Figure 1: Schwaferts' Graph

$$
\begin{aligned}
& P\left(U \mid f_{1}\right) \propto \sum_{R, W, S, N} P(R) P(W) P(S \mid R) P(N \mid R, W) P\left(f_{1} \mid W\right) P\left(U \mid S, N, f_{1}\right) \\
& \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)
\end{aligned}
$$

$$
P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}
$$

$$
P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}
$$

product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product W : $\Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product W: $\Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product W: $\Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product W: $\Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: 2
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product W: $\Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product W: $\Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
product $N: \Psi_{2 N}(R, S, N, U)=\tau_{1}(R, N) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$ product $\mathbf{N}: \Psi_{2 N}(R, S, N, U)=\tau_{1}(R, N) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$ if U over binary $d_{U}>2 \rightarrow$ factor product $2 R$ fewest multiplications
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
product $\mathbf{N}: \Psi_{2 N}(R, S, N, U)=\tau_{1}(R, N) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
if U over binary $d_{U}>2 \rightarrow$ factor product $2 R$ fewest multiplications
sum out R: $\tau_{2}(S, N)=\sum_{R} \Psi_{2}(R, S, N)$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
product $\mathbf{N}: \Psi_{2 N}(R, S, N, U)=\tau_{1}(R, N) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$ if U over binary $d_{U}>2 \rightarrow$ factor product $2 R$ fewest multiplications sum out R: $\tau_{2}(S, N)=\sum_{R} \Psi_{2}(R, S, N)$
product S,N: $\Psi_{3}(S, N, U)=P\left(U \mid S, N, f_{1}\right) \tau_{2}(S, N)$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
product $\mathbf{N}: \Psi_{2 N}(R, S, N, U)=\tau_{1}(R, N) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
if U over binary $d_{U}>2 \rightarrow$ factor product $2 R$ fewest multiplications
sum out R: $\tau_{2}(S, N)=\sum_{R} \Psi_{2}(R, S, N)$
product S,N: $\Psi_{3}(S, N, U)=P\left(U \mid S, N, f_{1}\right) \tau_{2}(S, N)$
sum out S, $\mathbf{N}: \sum_{S, N} \Psi_{3}(S, N, U)$
$P\left(U \mid f_{1}\right) \propto \sum_{R, S, N} P(R) P(S \mid R) P\left(U \mid S, N, f_{1}\right) \sum_{W} \underbrace{P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)}$
product $\mathbf{W}: \Psi_{1}(R, W, N)=P(W) P(N \mid R, W) P\left(f_{1} \mid W\right)$
sum out $\mathbf{W}: \tau_{1}(R, N)=\sum_{W} \Psi_{1}(R, W, N)$

Now there are 3 options to continue:
product R: $\Psi_{2 R}(R, S, N)=P(R) P(S \mid R) \tau_{1}(R, N)$ mltp: $2 d_{R} d_{S} d_{N}$
product S: $\Psi_{2 S}(R, S, N, U)=P(S \mid R) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$
product $\mathbf{N}: \Psi_{2 N}(R, S, N, U)=\tau_{1}(R, N) P\left(U \mid S, N, f_{1}\right)$ mltp: $1 d_{R} d_{S} d_{N} d_{U}$ if U over binary $d_{U}>2 \rightarrow$ factor product $2 R$ fewest multiplications sum out R: $\tau_{2}(S, N)=\sum_{R} \Psi_{2}(R, S, N)$
product S,N: $\Psi_{3}(S, N, U)=P\left(U \mid S, N, f_{1}\right) \tau_{2}(S, N)$
sum out S,N: $\sum_{S, N} \Psi_{3}(S, N, U) \propto P\left(U \mid f_{1}\right)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product $\mathbf{W}: \Psi_{1}(R, W, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product $\mathrm{W}: \Psi_{1}(R, W, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product W: $\Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product W: $\Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product W: $\Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$
- product R: $\Psi_{2}(R, S, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product W: $\Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$
- product R: $\Psi_{2}(R, S, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product W: $\Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$
- product R: $\Psi_{2}(R, S, N)$
- sum out R: $\tau_{2}(S, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product W: $\Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$
- product R: $\Psi_{2}(R, S, N)$
- sum out \mathbf{R} : $\tau_{2}(S, N)$

VARIABLE ELIMINATION - GRAPH VIEW

- reduce: $F=f_{1}$
- product $\mathrm{W}: \Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$
- product R: $\Psi_{2}(R, S, N)$
- sum out R: $\tau_{2}(S, N)$
- product R: $\Psi_{3}(S, N, U)$

VARIABLE ELIMINATION - VIEW

- reduce: $F=f_{1}$
- product $\mathrm{W}: \Psi_{1}(R, W, N)$
- sum out W: $\tau_{1}(R, N)$
- product R: $\Psi_{2}(R, S, N)$
- sum out R: $\tau_{2}(S, N)$
- product R: $\Psi_{3}(S, N, U)$

VARIABLE ELIMINATION - INDUCED GRAPH

VARIABLE ELIMINATION - INDUCED GRAPH

VARIABLE ELIMINATION - INDUCED GRAPH

Let $\oplus=\left\{\Phi_{1}, \ldots, \Phi_{K}\right\}$ be a set of factors over $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$, and α be an elimination ordering for some subset $\mathbf{X} \subseteq \mathcal{X}$. The induced graph $\mathcal{I}_{\oplus, \alpha}$ is an undirected graph over \mathcal{X}, where X_{i} and X_{j} are connected by en edge if they both appear in same intermediate factor Ψ genreated by the VE algorithm using α as an elimination ordering.

VARIABLE ELIMINATION - INDUCED GRAPH

Theorem
The scope of every generated factor Ψ is a clique in $\mathcal{I}_{\oplus, \alpha}$.
Every maximal clique in $\mathcal{I}_{\oplus, \alpha}$ is the scope of some Ψ.

VARIABLE ELIMINATION - INDUCED GRAPH

Theorem
The scope of every generated factor Ψ is a clique in $\mathcal{I}_{\oplus, \alpha}$.
Every maximal clique in $\mathcal{I}_{\oplus, \alpha}$ is the scope of some Ψ.
\rightarrow Direct correspondence: maximal factors generated \leftrightarrow maximal cliques.

VARIABLE ELIMINATION - INDUCED GRAPH

Theorem
The scope of every generated factor Ψ is a clique in $\mathcal{I}_{\oplus, \alpha}$.
Every maximal clique in $\mathcal{I}_{\oplus, \alpha}$ is the scope of some Ψ.
\rightarrow Direct correspondence: maximal factors generated \leftrightarrow maximal cliques.
\rightarrow Size of maximal cliques depends strongly on α.

VARIABLE ELIMINATION - INDUCED GRAPH

Theorem
The scope of every generated factor Ψ is a clique in $\mathcal{I}_{\oplus, \alpha}$.
Every maximal clique in $\mathcal{I}_{\oplus, \alpha}$ is the scope of some Ψ.
\rightarrow Direct correspondence: maximal factors generated \leftrightarrow maximal cliques.
\rightarrow Size of maximal cliques depends strongly on α.
width: Number of variables in largest clique in $\mathcal{I}_{\oplus, \alpha}$ minus 1.

VARIABLE ELIMINATION - INDUCED GRAPH

Theorem
The scope of every generated factor Ψ is a clique in $\mathcal{I}_{\oplus, \alpha}$.
Every maximal clique in $\mathcal{I}_{\oplus, \alpha}$ is the scope of some Ψ.
\rightarrow Direct correspondence: maximal factors generated \leftrightarrow maximal cliques.
\rightarrow Size of maximal cliques depends strongly on α.
width: Number of variables in largest clique in $\mathcal{I}_{\oplus, \alpha}$ minus 1.

Finding best α is NP-complete, but search algorithms using simple heuristics (min-neighbor/weight/fill) work in practice.

VARIABLE ELIMINATION - SUMMARY

Algorithm 1 Variable Elimination for CPD
1: reduce initial factors by evidence $\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}$

VARIABLE ELIMINATION - SUMMARY

Algorithm 2 Variable Elimination for CPD
1: reduce initial factors by evidence $\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}$
2: search elimination ordering using heuristics $\rightarrow \alpha$

VARIABLE ELIMINATION - SUMMARY

Algorithm 3 Variable Elimination for CPD
1: reduce initial factors by evidence $\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}$
2: search elimination ordering using heuristics $\rightarrow \alpha$
3: for all $X_{\alpha(k)} \in \mathbf{W}$ do

VARIABLE ELIMINATION - SUMMARY

Algorithm 4 Variable Elimination for CPD
1: reduce initial factors by evidence $\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}$
2: search elimination ordering using heuristics $\rightarrow \alpha$
3: for all $X_{\alpha(k)} \in \mathbf{W}$ do
4: product $\Psi_{k}=\prod_{\Phi_{i} \in \oplus: X_{\alpha(k)} \in \operatorname{Scope}\left[\Phi_{i}\right]} \Phi_{i}$

VARIABLE ELIMINATION - SUMMARY

Algorithm 5 Variable Elimination for CPD
1: reduce initial factors by evidence $\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}$
2: search elimination ordering using heuristics $\rightarrow \alpha$
3: for all $X_{\alpha(k)} \in \mathbf{W}$ do
4: product $\Psi_{k}=\prod_{\Phi_{i} \in \oplus: X_{\alpha(k)} \in \operatorname{Scope}\left[\Phi_{i}\right]} \Phi_{i}$
5: \quad sum $\tau_{k}=\sum_{X_{\alpha(k)}} \Psi_{k}$

VARIABLE ELIMINATION - SUMMARY

```
Algorithm 6 Variable Elimination for CPD
    1: reduce initial factors by evidence \(\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}\)
    2: search elimination ordering using heuristics \(\rightarrow \alpha\)
    3: for all \(X_{\alpha(k)} \in \mathbf{W}\) do
    4: product \(\Psi_{k}=\prod_{\Phi_{i} \in \oplus: X_{\alpha(k)} \in \operatorname{Scope}\left[\Phi_{i}\right]} \Phi_{i}\)
    5: \(\quad \operatorname{sum} \tau_{k}=\sum_{X_{\alpha(k)}} \Psi_{k}\)
    6: update \(\tau_{k}:=\Phi_{m+k} \in \oplus\)
```


VARIABLE ELIMINATION - SUMMARY

```
Algorithm 7 Variable Elimination for CPD
    1: reduce initial factors by evidence \(\mathbf{E}=\mathbf{e} \rightarrow \oplus:=\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}\)
    2: search elimination ordering using heuristics \(\rightarrow \alpha\)
    3: for all \(X_{\alpha(k)} \in \mathbf{W}\) do
    4: product \(\Psi_{k}=\prod_{\Phi_{i} \in \oplus: X_{\alpha(k)} \in \operatorname{Scope}\left[\Phi_{i}\right]} \Phi_{i}\)
    5: \(\quad \operatorname{sum} \tau_{k}=\sum_{X_{\alpha(k)}} \Psi_{k}\)
    6: update \(\tau_{k}:=\Phi_{m+k} \in \oplus\)
    7: end for
    8: renormalize the final product \(\Psi_{K+1}(\mathbf{Y}) \rightarrow\) proper CDP \(P(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})\)
```


MESSAGE PASSING

factors generated by VE

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster
factors generated by VE

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

factors generated by VE

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

A cluster graph \mathcal{T} is an undirected graph.
Each node is associated with a cluster $\mathbf{C}_{\mathbf{i}} \subseteq \mathcal{X}$.
Each edge is associated with a sepset $\mathbf{S}_{\mathbf{i}, \mathbf{j}} \supseteq \mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$.
Family-preserving: Each factor $\Phi_{k} \in \oplus$ must be associated with a cluster $\mathbf{C}_{\mathbf{k}}$, such that Scope $\left[\Phi_{k}\right] \supseteq \mathbf{C}_{\mathbf{k}}$.

factors generated by VE

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

A cluster graph \mathcal{T} is an undirected graph.
Each node is associated with a cluster $\mathbf{C}_{\mathbf{i}} \subseteq \mathcal{X}$.
Each edge is associated with a sepset $\mathbf{S}_{\mathbf{i}, \mathbf{j}} \supseteq \mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$.
Family-preserving: Each factor $\Phi_{k} \in \oplus$ must be associated with a cluster $\mathbf{C}_{\mathbf{k}}$, such that Scope $\left[\Phi_{k}\right] \supseteq \mathbf{C}_{\mathbf{k}}$.

Running Intersection Property: All information has to be shared on one way.

factors generated by VE

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

A cluster graph \mathcal{T} is an undirected graph.
Each node is associated with a cluster $\mathbf{C}_{\mathbf{i}} \subseteq \mathcal{X}$.
Each edge is associated with a sepset $\mathbf{S}_{\mathbf{i}, \mathbf{j}} \supseteq \mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$.
Family-preserving: Each factor $\Phi_{k} \in \oplus$ must be associated with a cluster \mathbf{C}_{k}, such that Scope $\left[\Phi_{k}\right] \supseteq \mathbf{C}_{\mathbf{k}}$.

Running Intersection Property: All information has to be shared on one way. Clique Tree: Cluster graph without loops that satisfies the RIP.
factors generated by VE

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

A cluster graph \mathcal{T} is an undirected graph.
Each node is associated with a cluster $\mathbf{C}_{\mathbf{i}} \subseteq \mathcal{X}$.
Each edge is associated with a sepset $\mathbf{S}_{\mathrm{i}, \mathrm{j}} \supseteq \mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$.
Family-preserving: Each factor $\Phi_{k} \in \oplus$ must be associated with a cluster $\mathbf{C}_{\mathbf{k}}$, such that Scope $\left[\Phi_{k}\right] \supseteq \mathbf{C}_{\mathbf{k}}$.

Running Intersection Property: All information has to be shared on one way. Clique Tree: Cluster graph without loops that satisfies the RIP.
Theorem: A Variable Elimination process induces a clique tree.

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

A cluster graph \mathcal{T} is an undirected graph.
Each node is associated with a cluster $\mathbf{C}_{\mathbf{i}} \subseteq \mathcal{X}$.
Each edge is associated with a sepset $\mathbf{S}_{\mathbf{i}, \mathrm{j}} \supseteq \mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$.
Family-preserving: Each factor $\Phi_{k} \in \oplus$ must be associated with a cluster $\mathbf{C}_{\mathbf{k}}$, such that Scope $\left[\Phi_{k}\right] \supseteq \mathbf{C}_{\mathbf{k}}$.

Running Intersection Property: All information has to be shared on one way.
Clique Tree: Cluster graph without loops that satisfies the RIP.
Theorem: A Variable Elimination process induces a clique tree.
Correctness: Exact marginals for clique trees, approximate for loopy cluster graphs.

- $\Psi_{1}(R, W, N)$ cluster
- $\tau_{1}(R, N)$ sepset
- $\Psi_{2}(R, S, N)$ cluster
- $\tau_{2}(S, N)$ sepset
- $\Psi_{3}(S, N, U)$ cluster

A cluster graph \mathcal{T} is an undirected graph.
Each node is associated with a cluster $\mathbf{C}_{\mathbf{i}} \subseteq \mathcal{X}$.
Each edge is associated with a sepset $\mathbf{S}_{\mathbf{i}, \mathrm{j}} \supseteq \mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$.
Family-preserving: Each factor $\Phi_{k} \in \oplus$ must be associated with a cluster $\mathbf{C}_{\mathbf{k}}$, such that Scope $\left[\Phi_{k}\right] \supseteq \mathbf{C}_{\mathbf{k}}$.

Running Intersection Property: All information has to be shared on one way.
Clique Tree: Cluster graph without loops that satisfies the RIP.
Theorem: A Variable Elimination process induces a clique tree.
Correctness: Exact marginals for clique trees, approximate for loopy cluster graphs.

MESSAGE PASSING

initial potential Ψ_{k}

MESSAGE PASSING

initial potential: Ψ_{k} message from $\mathbf{C}_{\mathbf{i}}$ to $\mathbf{C}_{\mathbf{j}}: \delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{\mathbf{i}}-\{j\}\right)} \delta_{k \rightarrow i}$

$$
\delta_{1 \rightarrow 2}=\Sigma_{W} \Psi_{1}
$$

$$
\delta_{3 \rightarrow 2}=\Sigma_{U} \Psi_{3}
$$

MESSAGE PASSING

initial potential: Ψ_{k}
message from $\mathbf{C}_{\mathbf{i}}$ to $\mathbf{C}_{\mathbf{j}}: \delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathrm{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{\mathbf{i}}-\{j\}\right)} \delta_{k \rightarrow i}$

$$
\delta_{1 \rightarrow 2}=\Sigma_{W} \Psi_{1} \quad \delta_{2 \rightarrow 3}=\sum_{R} \Psi_{2} \delta_{1 \rightarrow 2}
$$

$$
\delta_{2 \rightarrow 1}=\Sigma_{S} \Psi_{2} \delta_{3 \rightarrow 2} \quad \delta_{3 \rightarrow 2}=\Sigma_{U} \Psi_{3}
$$

MESSAGE PASSING

initial potential: Ψ_{k}
message from $\mathbf{C}_{\mathbf{i}}$ to $\mathbf{C}_{\mathbf{j}}: \delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathrm{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{\mathbf{i}}-\{j\}\right)} \delta_{k \rightarrow i}$

$$
\delta_{1 \rightarrow 2}=\Sigma_{W} \Psi_{1} \quad \delta_{2 \rightarrow 3}=\sum_{R} \Psi_{2} \delta_{1 \rightarrow 2}
$$

$$
\delta_{2 \rightarrow 1}=\Sigma_{S} \Psi_{2} \delta_{3 \rightarrow 2} \quad \delta_{3 \rightarrow 2}=\Sigma_{U} \Psi_{3}
$$

Beliefs: \propto marginals(exact/approximate): $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$

MESSAGE PASSING

initial potential: Ψ_{k}
message from $\mathbf{C}_{\mathbf{i}}$ to $\mathbf{C}_{\mathbf{j}}: \delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{\mathbf{i}}-\{j\}\right)} \delta_{k \rightarrow i}$

$$
\delta_{1 \rightarrow 2}=\Sigma_{W} \Psi_{1} \quad \delta_{2 \rightarrow 3}=\Sigma_{R} \Psi_{2} \delta_{1 \rightarrow 2}
$$

$$
\delta_{2 \rightarrow 1}=\Sigma_{S} \Psi_{2} \delta_{3 \rightarrow 2} \quad \delta_{3 \rightarrow 2}=\Sigma_{U} \Psi_{3}
$$

Beliefs: \propto marginals(exact/approximate): $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$
Calibration: clusters agree in their beliefs over their sepset:
$\sum_{\mathrm{C}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}, \mathrm{j}}} \beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\sum_{\mathrm{C}_{\mathrm{j}}-\mathrm{S}_{\mathrm{i}, \mathrm{j}}} \beta_{j}\left(\mathbf{C}_{\mathrm{j}}\right)$

MESSAGE PASSING

initial potential: Ψ_{k}
message from $\mathbf{C}_{\mathbf{i}}$ to $\mathbf{C}_{\mathbf{j}}: \delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathrm{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{\mathbf{i}}-\{j\}\right)} \delta_{k \rightarrow i}$

$$
\delta_{1 \rightarrow 2}=\Sigma W \Psi_{1} \quad \delta_{2 \rightarrow 3}=\Sigma_{R} \Psi_{2} \delta_{1 \rightarrow 2}
$$

$$
\delta_{2 \rightarrow 1}=\Sigma_{S} \Psi_{2} \delta_{3 \rightarrow 2} \quad \delta_{3 \rightarrow 2}=\Sigma_{U} \Psi_{3}
$$

Beliefs: \propto marginals(exact/approximate): $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$
Calibration: clusters agree in their beliefs over their sepset:
$\sum_{\mathrm{C}_{\mathbf{i}}-\mathrm{s}_{\mathrm{i}, \mathrm{j}}} \beta_{i}\left(\mathrm{C}_{\mathbf{i}}\right)=\sum_{\mathrm{C}_{\mathrm{j}}-\mathrm{s}_{\mathrm{i}, \mathrm{j}}} \beta_{j}\left(\mathrm{C}_{\mathrm{j}}\right)$
Result: $P(R, W, N), P(R, S, N)$ and $P(S, N, U)$.

How do I get $P\left(U \mid S=s_{1}\right)$ or $P\left(U \mid W=w_{1}\right)$?

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 8 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 9 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 10 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathrm{i}, \mathrm{j}}\right)=\sum_{\mathrm{c}_{\mathrm{i}}-\mathbf{S}_{\mathrm{i}, \mathrm{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{\mathrm{i}}-j\right)} \delta_{k \rightarrow i}$.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 11 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{s}_{\mathbf{i}, \mathrm{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{i}-j\right)} \delta_{k \rightarrow i}$.
4: upward pass all messages from leafs to root.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 12 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{s}_{\mathbf{i}, \mathrm{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{i}-j\right)} \delta_{k \rightarrow i}$.
4: upward pass all messages from leafs to root.
5: downward pass all messages from root to leafs.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 13 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{i}-j\right)} \delta_{k \rightarrow i}$.
4: upward pass all messages from leafs to root.
5: downward pass all messages from root to leafs.
6: calculate beliefs: $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 14 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{i}-j\right)} \delta_{k \rightarrow i}$.
4: upward pass all messages from leafs to root.
5: downward pass all messages from root to leafs.
6: calculate beliefs: $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$.
7: renormalize beliefs to get marginal distributions.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 15 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{i}-j\right)} \delta_{k \rightarrow i}$.
4: upward pass all messages from leafs to root.
5: downward pass all messages from root to leafs.
6: calculate beliefs: $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$.
7: renormalize beliefs to get marginal distributions.
8: store tree structure and marginal distributions.

MESSAGE PASSING - CLIQUE TREE ALGORITHM

Algorithm 16 Clique Tree Algorithm
1: simulate VE and search for good $\alpha \rightarrow$ clique tree.
2: product initial potentials: $\Psi_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\prod_{k: \alpha(k)=i} \Phi_{k}$.
3: update messages: $\delta_{i \rightarrow j}\left(\mathbf{S}_{\mathbf{i}, \mathbf{j}}\right)=\sum_{\mathbf{C}_{\mathbf{i}}-\mathbf{S}_{\mathbf{i}, \mathbf{j}}} \Psi_{i} \prod_{k \in\left(\mathcal{N}_{i}-j\right)} \delta_{k \rightarrow i}$.
4: upward pass all messages from leafs to root.
5: downward pass all messages from root to leafs.
6: calculate beliefs: $\beta_{i}\left(\mathbf{C}_{\mathbf{i}}\right)=\Psi_{i} \prod_{k \in \mathcal{N}_{i}} \delta_{k \rightarrow i}$.
7: renormalize beliefs to get marginal distributions.
8: store tree structure and marginal distributions.

SAMPLING

SAMPLING

simple forward sampling

SAMPLING

simple forward sampling

- start sampling parents

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$
- use those values again and form a loop

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$
- use those values again and form a loop
problems
- low p needs many samples (chernoff bound)

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$
- use those values again and form a loop
problems
- low p needs many samples (chernoff bound)
- evidence reduces acceptable samples

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$
- use those values again and form a loop
problems
- low p needs many samples (chernoff bound)
- evidence reduces acceptable samples
- when has it mixed?

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$
- use those values again and form a loop
problems
- low p needs many samples (chernoff bound)
- evidence reduces acceptable samples
- when has it mixed?
- are adjacent samples i.i.d.?

SAMPLING

simple forward sampling

- start sampling parents
- sample through step by step

Gibbs sampling

- initialize values for all variables
- sample new values from full conditionals $P\left(X_{i} \mid \mathbf{X}_{-i}\right)$
- use those values again and form a loop
problems
- low p needs many samples (chernoff bound)
- evidence reduces acceptable samples
- when has it mixed?
- are adjacent samples i.i.d.?

REFERENCES

1. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press 2009.
2. D. Koller, Probabilistic Graphical Models.
https://class.coursera.org/pgm/lecture

THANK YOU FOR YOUR ATTENTION

Questions?

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}$

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]$

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]$

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]<(m+n) N$

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n

$$
\begin{aligned}
& \sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}= \\
& \sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]<(m+n) N
\end{aligned}
$$

- $r_{k} \#$ variables in Ψ_{k}

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{k} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]<(m+n) N$

- $r_{k} \#$ variables in Ψ_{k}
- $r:=$ max $_{k} r_{k} \rightarrow$

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{k} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]<(m+n) N$

- $r_{k} \#$ variables in Ψ_{k}
- $r:=\max _{k} r_{k} \rightarrow$ width +1

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]<(m+n) N$

- $r_{k} \#$ variables in Ψ_{k}
- $r:=\max _{k} r_{k} \rightarrow$ width +1
- $d:=\max _{k} d_{k} \rightarrow N \leq d^{k}$

VARIABLE ELIMINATION - COMPLEXITY

total operations linear in N, m and n
$\sum_{k=1}^{K} o_{k}^{(\text {prod })}+o_{k}^{(\text {sum })}=$
$\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N_{k}+\frac{d_{k}-1}{d_{k}} N_{k}\right]<\sum_{k=1}^{K}\left[\left(m_{k}-1\right) N+N\right]<(m+n) N$

- $r_{k} \#$ variables in Ψ_{k}
- $r:=\max _{k} r_{k} \rightarrow$ width +1
- $d:=\max _{k} d_{k} \rightarrow N \leq d^{k}$
worst case operations $(m+n) d^{r}$ exponential in r

THEME

For this presentation the 'Metropolis' theme by Matthias Vogelgesang (based on the 'hsrm' theme by Benjamin Weiss) was used.

Get the source of this theme and the demo presentation from:
github.com/matze/mtheme

The theme itself is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

(c)(i)(0)

