Introduction 00000 0000	Gaussians 00 00	Hybrid BNs 00 00 0000	Exponential family 0000	Entropy O O	Relative entropy 00	Projections 0 00	Summary 0000

Introduction to continuous and hybrid

Bayesian networks

Joanna Ficek

Supervisor: Paul Fink, M.Sc.

Department of Statistics

LMU

January 16, 2016

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Gaussians

Hybrid BNs

Continuous children with discrete parents

Discrete children with continuous parents

Exponential family

Entropy

Relative entropy

Projections

I-projection

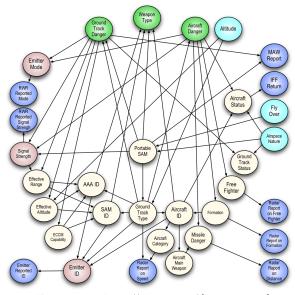
M-projections

Summary

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00 00 0000	0000	0	00	000	0000

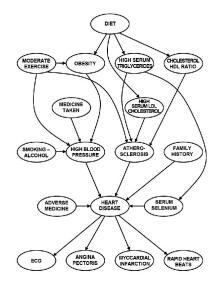
Why? Where?

		Summary
••••••• ••••	000	0000

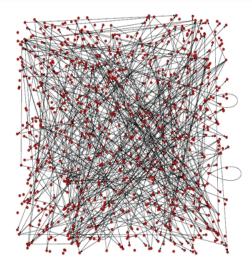


"Bayesian networks", http://www.pr-owl.org/ [access 15.01.2016] (ロト イヨト イヨト イヨト イヨト モラ シュー

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
0000	00 00	00 00 0000	0000	0	00	000	0000



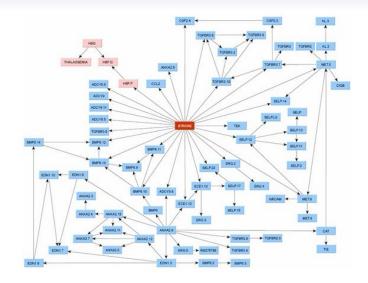
Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	000	0000



Wenying Yan et al. "Effects of Time Point Measurement on the Reconstruction of Gene Regulatory Networks", http://www.mdpi.com/ [access 13.01.2016]

(日) (個) (目) (目) (目) (目)

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00	0000	0	00	000	0000



Sebastiani et al., Nature Genetics 37:435,2005

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
		0000					

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- medical diagnosis
- gene expression data
- complex genetic models
- robot localization
- risk management in robotics
- credit scoring
- ...

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00	00 00 0000	0000	0	00	000	0000

Continuous nodes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

1. Challenges:

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00	00 00 0000	0000	0	00	000	0000

Continuous nodes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Challenges:
 - no representation for all possible densities

(unlike CPTs in discrete BNs)

- inference issues
- complex distributions
- 2. Solutions:

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00	00 00 0000	0000	0	00	000	0000

Continuous nodes

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 1. Challenges:
 - no representation for all possible densities

(unlike CPTs in discrete BNs)

- inference issues
- complex distributions
- 2. Solutions:
 - discretization
 - Linear Models
 - Gaussian approximation

Introduction Gaus	ssians Hybrid Bl	Ns Exponential fami	ily Entropy	Relative entropy	Projections	Summary
00000 00 0000 00	00 00 0000	0000	0	00	000	0000

- 1. Idea: continuous domain into a finite set of intervals
- 2. Methods: Equal Interval Width, Equal Interval Frequency,

Introduction Gaus	ssians Hybrid Bl	Ns Exponential fami	ily Entropy	Relative entropy	Projections	Summary
00000 00 0000 00	00 00 0000	0000	0	00	000	0000

- 1. Idea: continuous domain into a finite set of intervals
- 2. Methods: Equal Interval Width, Equal Interval Frequency, ...

Select $y^* \in [y^1, y^2]$

$$P(X \in [x^1, x^2] \mid y^*) = \int_{x^1}^{x^2} p(x \mid y^*) dy$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	000	0000

- 1. Idea: continuous domain into a finite set of intervals
- 2. Methods: Equal Interval Width, Equal Interval Frequency, ...

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	000	0000

- 1. Idea: continuous domain into a finite set of intervals
- 2. Methods: Equal Interval Width, Equal Interval Frequency, ...
- 3. Limitations:
 - loss of information
 - trade-off: accuracy vs. computational cost $O(d^c)$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	000	0000

- 1. Idea: continuous domain into a finite set of intervals
- 2. Methods: Equal Interval Width, Equal Interval Frequency, ...
- 3. Limitations:
 - loss of information
 - trade-off: accuracy vs. computational cost $O(d^c)$
- 4. Alternative: Linear Models

Introduction Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 00 0000 00	00 00 0000	0000	0	00	000	0000

Linear Models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Broad class of models that satisfy independence of casual influence:

influence of multiple causes can be decomposed into separate influences.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00 00 0000	0000	0	00	000	0000

Linear Models

Broad class of models that satisfy independence of casual influence:

influence of multiple causes can be decomposed into separate influences.

• the effect of parents $(Y_1, ..., Y_n)$ on X can be summarized via linear function

$$f(Y_1, ..., Y_n) = \sum_{i=0}^k w_i Y_i$$

where w are coefficients.

• no interactions between Y_i 's (only through $f(Y_1, ..., Y_n)$)

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	•0	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	0 0	00	0000	0	00	000	0000
		0000					

Definition

Let X be a continuous variable with continuous parents $Y_1, ..., Y_k$. We say that X has a Linear Gaussian CPD if there are $\beta_0, ..., \beta_k$ and σ^2 such that:

$$p(X \mid \mathbf{y}) = \mathcal{N}(\beta_0 + \boldsymbol{\beta}^T \mathbf{y}, \sigma^2)$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	••	00	0000	0	00	000	0000
0000	00	0000		0		00	

Definition

Let X be a continuous variable with continuous parents $Y_1, ..., Y_k$. We say that X has a Linear Gaussian CPD if there are $\beta_0, ..., \beta_k$ and σ^2 such that:

$$p(X \mid \boldsymbol{y}) = \mathcal{N}(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{y}, \sigma^2)$$

(日) (日) (日) (日) (日) (日) (日) (日)

$$X = \beta_0 + \beta_1 y_1 + \dots + \beta_k y_k + \epsilon$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	0.	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

$$p(IQ) = \mathcal{N}(100, 15)$$

 $p(E \mid IQ) = \mathcal{N}(15 + 0.6IQ, 10) = \mathcal{N}(75, 10)$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	0.	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

$$p(IQ) = \mathcal{N}(100, 15)$$
$$p(E \mid IQ) = \mathcal{N}(15 + 0.6IQ, 10) = \mathcal{N}(75, 10)$$

Definition

A Gaussian Bayesian network is a Bayesian network where all the variables are continuous and where CPDs are linear Gaussians.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	•0	00		0		00	
		0000					

$\mathsf{Gaussian}~\mathsf{BN} \Rightarrow \mathsf{joint}~\mathsf{Gaussian}$

Theorem

Let X be a linear Gaussian of its parents $Y_1, ..., Y_k$: $p(X | \mathbf{y}) = \mathcal{N}(\beta_0 + \beta^T \mathbf{y}; \sigma^2)$ Assume, that $Y_1, ..., Y_k$ are jointly Gaussian with distribution $\mathcal{N}(\mu; \Sigma)$. Then:

• The distribution of X is a normal distribution $p(X) = \mathcal{N}(\mu_X; \sigma_X^2)$ where:

$$\mu_X = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{\mu} \qquad \sigma_X^2 = \sigma^2 + \boldsymbol{\beta}^T \boldsymbol{\Sigma} \boldsymbol{\beta}$$

• The joint distribution over {**Y**, X} is a normal distribution, where:

$$Cov[Y_i, X] = \sum_{j=0}^k \beta_j \Sigma_{i,j}$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	•0	00		0		00	
		0000					

$\mathsf{Gaussian}~\mathsf{BN} \Rightarrow \mathsf{joint}~\mathsf{Gaussian}$

Theorem

Let X be a linear Gaussian of its parents $Y_1, ..., Y_k$: $p(X | \mathbf{y}) = \mathcal{N}(\beta_0 + \beta^T \mathbf{y}; \sigma^2)$ Assume, that $Y_1, ..., Y_k$ are jointly Gaussian with distribution $\mathcal{N}(\mu; \Sigma)$. Then:

• The distribution of X is a normal distribution $p(X) = \mathcal{N}(\mu_X; \sigma_X^2)$ where:

$$\mu_X = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{\mu} \qquad \sigma_X^2 = \sigma^2 + \boldsymbol{\beta}^T \boldsymbol{\Sigma} \boldsymbol{\beta}$$

• The joint distribution over {**Y**, X} is a normal distribution, where:

$$Cov[Y_i, X] = \sum_{j=0}^k \beta_j \Sigma_{i,j}$$

 \Rightarrow A Gaussian Bayesian network defines a joint Gaussian distribution.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	0●	00		0		00	
		0000					

$\mathsf{Gaussian}\ \mathsf{BN} \Leftarrow \mathsf{joint}\ \mathsf{Gaussian}$

Theorem

Let $\mathcal{X} = X_1, ..., X_n$ and let P be a joint Gaussian distribution over \mathcal{X} .

Given any ordering $X_1, ..., X_n$ over \mathcal{X} , we can construct a Bayesian network graph \mathcal{G} and a Bayesian network \mathcal{B} such that:

1.
$$Pa_i^{\mathcal{G}} \subseteq X_1, ..., X_{i-1};$$

- 2. the CPD of X_i in \mathcal{B} is a linear Gaussian of its parents;
- 3. G is a minimal I-map for P.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	• • •• •• ••	0000	0	00	000	0000

Probability of being accepted to a german university

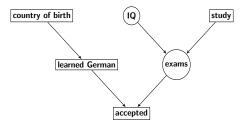
(MA programme) for international students form other EU-countries.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 00000 0000	Gaussians 00 00	Hybrid BNs	Exponential family 0000	Entropy 0 0	Relative entropy 00	Projections 0 00	Summary 0000
		0000					

Probability of being accepted to a german university

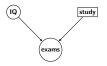
(MA programme) for international students form other EU-countries.



Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00	0000	0	00	0 00	0000

Hybrid BNs

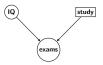
• continuous children with discrete (and continuous) parents



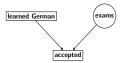
Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	000	0000

Hybrid BNs

• continuous children with discrete (and continuous) parents



• discrete children with continuous (and discrete) parents



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	•0		0		00	
		0000					

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	0		0		00	
		0000					

Definition

Let X be a continuous variable with discrete $\mathbf{A} = A_1, ..., A_m$ and continuous $\mathbf{Y} = Y_1, ..., Y_k$ parents. We define the Conditional Linear Gaussian (CLG) model as:

$$p(X \mid \boldsymbol{a}, \boldsymbol{y}) = \mathcal{N}(w_{\boldsymbol{a},0} + \sum_{i=1}^{k} w_{\boldsymbol{a},i} y_i; \sigma_{\boldsymbol{a}}^2)$$

where w are coefficients.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	0		0		00	
		0000					

Definition

Let X be a continuous variable with discrete $\mathbf{A} = A_1, ..., A_m$ and continuous $\mathbf{Y} = Y_1, ..., Y_k$ parents. We define the Conditional Linear Gaussian (CLG) model as:

$$p(X \mid \boldsymbol{a}, \boldsymbol{y}) = \mathcal{N}(w_{\boldsymbol{a},0} + \sum_{i=1}^{k} w_{\boldsymbol{a},i} y_i; \sigma_{\boldsymbol{a}}^2)$$

where w are coefficients.

· separate linear Gaussian model for each assignment to discrete parents

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	•0		0		00	
		0000					

Definition

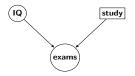
Let X be a continuous variable with discrete $\mathbf{A} = A_1, ..., A_m$ and continuous $\mathbf{Y} = Y_1, ..., Y_k$ parents. We define the Conditional Linear Gaussian (CLG) model as:

$$p(X \mid \boldsymbol{a}, \boldsymbol{y}) = \mathcal{N}(w_{\boldsymbol{a},0} + \sum_{i=1}^{k} w_{\boldsymbol{a},i} y_i; \sigma_{\boldsymbol{a}}^2)$$

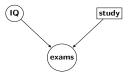
where w are coefficients.

- separate linear Gaussian model for each assignment to discrete parents
- defines a conditional Gaussian joint distribution [Lerner et al., 2001]

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	0.		0		00	
		0000					



Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	0000		0		00	
		0000					

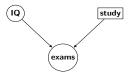


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $p(IQ) = \mathcal{N}(100, 15)$ $p(E \mid IQ, S = s^1) = \mathcal{N}(25 + 0.6IQ, 10) = \mathcal{N}(85, 10)$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	0.		0		00	
		0000					

Continuous children with discrete parents



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{split} \rho(IQ) &= \mathcal{N}(100, 15) \\ \rho(E \mid IQ, S = s^1) = \mathcal{N}(25 + 0.6IQ, 10) = \mathcal{N}(85, 10) \\ \rho(E \mid IQ, S = s^0) = \mathcal{N}(-5 + 0.7IQ, 12) = \mathcal{N}(65, 12) \end{split}$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	000	0000
		0000					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Threshold (au) which determines the change in discrete values

Introduction Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 00 0000 00	00	0000	000	00	000	0000

• Threshold (au) which determines the change in discrete values

X binary $\{x^0, x^1\}$ with parents $Y_1, ..., Y_k$:

 $f(Y_1,...,Y_k) \ge \tau \Rightarrow P(X = x^1)$ likely to be 1

 $f(Y_1,...,Y_k) < au \Rightarrow P(X = x^1)$ likely to be 0

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	000	0000
		0000					

• Threshold (τ) which determines the change in discrete values

X binary $\{x^0, x^1\}$ with parents $Y_1, ..., Y_k$: $f(Y_1, ..., Y_k) \ge \tau \Rightarrow P(X = x^1)$ likely to be 1 $f(Y_1, ..., Y_k) < \tau \Rightarrow P(X = x^1)$ likely to be 0 $f(Y_1, ..., Y_k) = w_0 + \sum_{i=1}^k w_i Y_i$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	0000		0		00	

• Threshold (au) which determines the change in discrete values

X binary
$$\{x^0, x^1\}$$
 with parents $Y_1, ..., Y_k$:
 $f(Y_1, ..., Y_k) \ge \tau \Rightarrow P(X = x^1)$ likely to be 1
 $f(Y_1, ..., Y_k) < \tau \Rightarrow P(X = x^1)$ likely to be 0
 $f(Y_1, ..., Y_k) = w_0 + \sum_{i=1}^k w_i Y_i$

Definition

The CPD $P(X|Y_1, ..., Y_k)$ is a logistic CPD if there are k + 1 weights $w_0, w_1, ..., w_k$ such that:

$$P(x^1|Y_1, ..., Y_k) = sigmoid(w_0 + \sum_{i=1}^k w_i Y_i)$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

- Threshold which determines the change in discrete values
- Augmented CLGs [Lerner et al. (2001)]

Definition

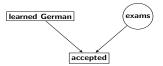
Let A be a discrete variable with possible values $a_1, ..., a_m$ and let $\mathbf{Y} = Y_1, ..., Y_k$ denote its continuous parents. We define the CPD in augmented Conditional Linear Gaussian model as:

$$p(A = a_i \mid y_1, ..., y_k) = \frac{exp(w_{i,0} + \sum_{l=1}^k w_{i,l}y_l)}{\sum_{j=1}^m exp(w_{j,0} + \sum_{s=1}^k w_{j,s}y_s)}$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

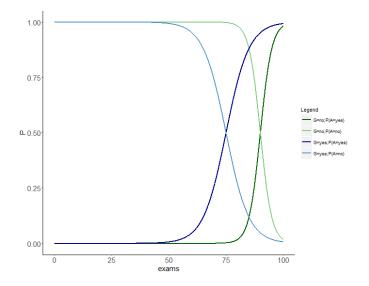
Definition

A Bayesian network with all discrete variables having only discrete parents and continuous variables having a CLG CPD is a Conditional Linear Gaussian network.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00 00 0000	0000	0	00	000	0000



(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	● 000	0	00	0	0000
0000	00	0000		0		00	

Exponential family

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An exponential family is specified by:

- a sufficient statistics function τ
- a parameter space that is a convex set Θ of legal parameters
- a natural parameter function t
- an auxiliary measure A over \mathcal{X}

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	00		0		00	

Exponential family

An exponential family is specified by:

- a sufficient statistics function $\boldsymbol{\tau}$
- a parameter space that is a convex set Θ of legal parameters
- a natural parameter function t
- an auxiliary measure A over \mathcal{X}

Definition

An exponential family $\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}$ over set of variables \mathcal{X} , where

$$\mathsf{P}_{ heta}(\xi) = rac{1}{Z(heta)} \mathsf{A}(\xi) \mathsf{exp}\{\langle t(oldsymbol{ heta}), au(\xi)
angle\}$$

with partition function

$$Z(oldsymbol{ heta}) = \sum_{\xi} A(\xi) exp\{\langle t(oldsymbol{ heta}), au(\xi)
angle\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 00	00 00 0000	0000	0	00	00	0000

Univariate normal distribution

$$\tau(\mathbf{x}) = \langle \mathbf{x}, \mathbf{x}^2 \rangle \tag{1}$$

$$t(\mu,\sigma^2) = \langle \frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} \rangle \tag{2}$$

$$Z(\mu,\sigma^2) = \sqrt{2\pi\sigma} \exp\left\{\frac{\mu^2}{2\sigma^2}\right\}$$
(3)

Then,

$$P(x) = \frac{1}{Z(\mu, \sigma^2)} exp\{\langle t(\theta), \tau(X)\} = \frac{1}{\sqrt{2\pi\sigma}} exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

・ロト・4日・4日・4日・日・900

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00	00 00 0000	0000	0	00	000	0000

Product distribution

Definition

A factor in an exponential family: $\phi_{\theta}(\xi) = A(\xi) \exp\{\langle t(\theta), \tau(\xi) \rangle\}$

Definition

Let $\Phi_1, ..., \Phi_k$ be exponential factor families. The composition of $\Phi_1, ..., \Phi_k$ is the family $\Phi_1 \times \Phi_2 \times ... \times \Phi_k$ parametrized by $\theta = \theta_1 \circ \theta_2 \circ ... \circ \theta_k \in \Theta_1 \times \Theta_2 \times ... \times \Theta_k$:

$$P_{\theta} \propto \prod_{i} \phi_{\theta_{i}}(\xi) = \Big(\prod_{i} A_{i}(\xi)\Big) \exp\Big\{\sum_{i} \langle t(\theta), \tau(\xi) \rangle \Big\} \Big\}$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00	00 00 0000	0000	0	00	000	0000

Product distribution

Definition

A factor in an exponential family: $\phi_{\theta}(\xi) = A(\xi) \exp\{\langle t(\theta), \tau(\xi) \rangle\}$

Definition

Let $\Phi_1, ..., \Phi_k$ be exponential factor families. The composition of $\Phi_1, ..., \Phi_k$ is the family $\Phi_1 \times \Phi_2 \times ... \times \Phi_k$ parametrized by $\theta = \theta_1 \circ \theta_2 \circ ... \circ \theta_k \in \Theta_1 \times \Theta_2 \times ... \times \Theta_k$: $P_{\theta} \propto \prod_i \phi_{\theta_i}(\xi) = \left(\prod_i A_i(\xi)\right) exp\left\{\sum_i \langle t(\theta), \tau(\xi) \rangle \right\}$

A Bayesian network with locally normalized exponential CPDs defines an exponential family.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	000	0	00	000	0000

Product distribution

Definition

A factor in an exponential family: $\phi_{\theta}(\xi) = A(\xi) \exp\{\langle \theta, \tau(\xi) \rangle\}$

Definition

Let $\Phi_1, ..., \Phi_k$ be exponential factor families. The composition of $\Phi_1, ..., \Phi_k$ is the family $\Phi_1 \times \Phi_2 \times ... \times \Phi_k$ parametrized by $\theta = \theta_1 \circ \theta_2 \circ ... \circ \theta_k \in \Theta_1 \times \Theta_2 \times ... \times \Theta_k$: $B_k \propto \prod \Phi_k (\xi) = \left(\prod \Phi_k(\xi) \right) \exp \left\{ \sum \langle f_k(\theta_k) - f_k(\xi) \rangle \right\}$

 $P_{\theta} \propto \prod_{i} \phi_{\theta_{i}}(\xi) = \left(\prod_{i} A_{i}(\xi)\right) \exp\left\{\sum_{i} \langle t_{i}(\theta_{i}), \tau_{i}(\xi) \rangle\right\}$

A Bayesian network with <u>locally normalized</u> exponential CPDs defines an exponential family.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00000	0000	0	00	00	0000

Measure of degree of disorder in a system (thermodynamics, R. Clausius, 1865) Shannon's Measure of Uncertainty - statistical entropy:

Definition

Let P(X) be a distribution over a random variable X. The entropy of X is

 $\boldsymbol{H}_{P}(X) = -\boldsymbol{E}_{P}[logP(X)]$

Introduction 00000 0000	Gaussians 00 00	00	Exponential family 0000	Entropy •	Relative entropy 00	Projections 0 00	Summary 0000
		0000					

Measure of degree of disorder in a system (thermodynamics, R. Clausius, 1865) Shannon's Measure of Uncertainty - statistical entropy:

Definition

Let P(X) be a distribution over a random variable X. The entropy of X is

$$\boldsymbol{H}_{P}(X) = -\boldsymbol{E}_{P}[logP(X)]$$

small entropy \Rightarrow probability mass on a few instances large entropy \Rightarrow probability mass uniformly spread

Introduction Gaussians Hyb 00000 00 00 0000 00 00 000 000	0000	Entropy ⊙ ●	Relative entropy 00	Projections 0 00	Summary 0000
---	------	-------------------	------------------------	------------------------	-----------------

Theorem

Let P_{θ} be a distribution in an exponential family defined by the functions τ and t. Then

$$oldsymbol{H}_{P_{oldsymbol{ heta}}}(X) = InZ(oldsymbol{ heta}) - \langle oldsymbol{E}_{P_{oldsymbol{ heta}}}[au(\mathcal{X})], t(oldsymbol{ heta})
angle$$

Introduction 00000 0000	Gaussians 00 00	Hybrid BNs 00 00 0000	Exponential family 0000	Entropy ○ ●	Relative entropy 00	Projections 0 00	Summary 0000
-------------------------------	-----------------------	--------------------------------	----------------------------	-------------------	------------------------	------------------------	-----------------

Theorem

Let P_{θ} be a distribution in an exponential family defined by the functions τ and t.

Then

$$oldsymbol{H}_{P_{oldsymbol{ heta}}}(X) = InZ(oldsymbol{ heta}) - \langle oldsymbol{E}_{P_{oldsymbol{ heta}}}[au(\mathcal{X})], t(oldsymbol{ heta})
angle$$

Theorem

Let $P(X) = \prod_i P(X_i \mid Pa_i^G)$ be a distribution consistent with a Bayesian network G. Then

$$\boldsymbol{H}_{P}(\mathcal{X}) = \sum_{i} \boldsymbol{H}_{P}(X_{i} \mid Pa_{i}^{\mathcal{G}}) = \sum_{i} \sum_{pa_{i}^{\mathcal{G}}} P(pa_{i}^{\mathcal{G}}) \boldsymbol{H}_{P}(X_{i} \mid pa_{i}^{\mathcal{G}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	•0	00	0000
		0000					

 $\mathsf{Complex}\ \mathsf{distribution} \Rightarrow \mathsf{approximation}$

Measure of inaccuracy: relative entropy (Kullback-Leibler distance)

Definition

Let Q and P be two distributions over random variables $X_1, ..., X_n$.

The relative entropy of Q and P is:

$$\boldsymbol{D}(Q(X_1,...,X_n) \parallel P(X_1,...,X_n)) = \boldsymbol{E}_Q \left[log \frac{Q(X_1,...,X_n)}{P(X_1,...,X_n)} \right]$$

where we set log(0) = 0.

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	•0	00	0000
		0000					

Complex distribution \Rightarrow approximation

Measure of inaccuracy: relative entropy (Kullback-Leibler distance)

Definition

Let Q and P be two distributions over random variables $X_1, ..., X_n$.

The relative entropy of Q and P is:

$$\boldsymbol{D}(Q(X_1,...,X_n) \parallel P(X_1,...,X_n)) = \boldsymbol{E}_Q\left[\log \frac{Q(X_1,...,X_n)}{P(X_1,...,X_n)}\right]$$

where we set log(0) = 0.

• $\bigvee_{P,Q} \boldsymbol{D}(Q \parallel P) \geq 0$

• $\bigvee_{P \neq Q} \boldsymbol{D}(Q \parallel P) \neq D(P \parallel Q)$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00 00 0000	0000	0	0.	000	0000

Theorem

Consider a distribution Q and a distribution P_{θ} in an exponential family defined by

 τ and t. Then

$$oldsymbol{D}(Q \parallel P_{ heta}) = -oldsymbol{H}_Q(\mathcal{X}) - \langle oldsymbol{E}_Q[au(\mathcal{X})], t(oldsymbol{ heta})
angle + InZ(oldsymbol{ heta})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00 00 0000	0000	0	0●	0 00	0000

Theorem

Consider a distribution Q and a distribution P_{θ} in an exponential family defined by τ and t. Then

$$oldsymbol{D}(Q \parallel P_{ heta}) = -oldsymbol{H}_Q(\mathcal{X}) - \langle oldsymbol{E}_Q[au(\mathcal{X})], t(oldsymbol{ heta})
angle + lnZ(oldsymbol{ heta})$$

Theorem

If P and Q are distributions over $\mathcal X$ consistent with a Bayesian network $\mathcal G$, then

$$\boldsymbol{D}(Q \parallel P) = \sum_{i} \sum_{pa_{i}^{\mathcal{G}}} Q(pa_{i}^{\mathcal{G}}) \boldsymbol{D}(Q(X_{i}, pa_{i}^{\mathcal{G}})) \parallel P(X_{i} \mid pa_{i}^{\mathcal{G}})$$

Introduction Gaussians H	Hybrid BNs Exponential fam	ily Entropy Relativ	ve entropy Projection	s Summary
0000 00 0		0 00	000	0000

Projections

Project a distribution P onto family of distributions Q.

I-projections

$$Q^{I} = arg \min_{Q \in \mathcal{Q}} \boldsymbol{D}(Q \parallel P)$$

• M-projections

$$Q^M = arg \min_{Q \in \mathcal{Q}} \boldsymbol{D}(P \parallel Q)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In general: $Q^I \neq Q^M$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00 00 0000	0000	0	00	00	0000

I-projections

$$Q^{I} = \arg\min_{Q \in \mathcal{Q}} \boldsymbol{D}(Q \parallel P) = \arg\min_{Q \in \mathcal{Q}} (-\boldsymbol{H}_{Q}(X) + \boldsymbol{E}_{Q}[-\ln P(X)])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- if complex graphical model
- high density where P is large

low density where P is small

- penalty for low entropy
- some simplification of computation is possible

Introdu	uction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	C	00	00 00 0000	0000	0	00	● ● ○	0000

M-projections

$$Q^{M} = \arg\min_{Q \in \mathcal{Q}} \boldsymbol{D}(P \parallel Q) = \arg\min_{Q \in \mathcal{Q}} (-\boldsymbol{H}_{P}(X) + \boldsymbol{E}_{P}[-\ln Q(X)])$$

- · learning problem
- attempts to match the main mass of P:
 - high density to the regions probable according to P
 - · high penalty for low density in these regions
- relatively high variance
- use of exponential form of the distribution may simplify the computation

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	○ ○●	0000

M-projections

Let P be a distribution over \mathcal{X} .

Theorem

Let Q be an exponential family defined by τ and t. Then $Q^M = Q_{\theta}$ if there is a set of parameters θ such that

 $E_{Q_{\theta}}[\tau(\mathcal{X})] = E_{P}[\tau(\mathcal{X})]$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00 00	00 00 0000	0000	0	00	0 0●	0000

M-projections

Let P be a distribution over \mathcal{X} .

Theorem

Let Q be an exponential family defined by τ and t. Then $Q^M = Q_{\theta}$ if there is a set of parameters θ such that

 $E_{Q_{\theta}}[\tau(\mathcal{X})] = E_{P}[\tau(\mathcal{X})]$

Theorem

Let \mathcal{G} be a Bayesian network structure. Then

$$Q^M(\mathcal{X}) = \prod_i P(X_i \mid Pa_i^{\mathcal{G}})$$

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000	00	00	0000	0	00	0	0000
0000	00	00		0		00	
		0000					

Summary

- 1. Continuous and hybrid BNs have many applications
- 2. Challenges: representation, inference
- 3. Solutions: discretization, Linear Models, approximation
- 4. Exponential family useful form
- 5. True distribution unknown or complex
 - \Rightarrow entropy, relative entropy
- 6. Projections find approximation

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00	00 00 0000	0000	0	00	000	0000

Bibliography

- Koller D. & Friedman N., 2009, Probabilistic Graphical Models. Principles and Techniques., The MIT Press, Massachusetts, USA
- Koller D., 2013, on-line course "Probabilistic Graphical Models", https://class.coursera.org/pgm/lecture
- Lerner et al., 2001, Exact Inference in Networks with Discrete Children of Continuous Parent, p.319-328, UAI 2001
- Pourret et al.,2008, Bayesian networks : a practical guide to applications, John Wiley & Sons Ltd, ISBN: 978-0-470-06030-8, online: http://bayanbox.ir/view/1741861298367825388/Olivier-Pourret-Patrick-Na-

Bruce-Marcot-Bay.pdf

Introduction	Gaussians	Hybrid BNs	Exponential family	Entropy	Relative entropy	Projections	Summary
00000 0000	00 00	00 00 0000	0000	0	00	000	0000

Bibliography

- Friedman et al., 2000, Using Bayesian Networks to Analyze Expression Data, Journal of Computational Biology, Volume7, No. 3/4
- Lauritzen S. & Sheehan N., 2003, Graphical Model for Genetic Analyses, Statistical Science 2003, Vol. 18,

No. 4, 489514

Introduction G 00000 0 0000 0	0 0	5	Exponential family 0000		Relative entropy 00	Projections 0 00	Summary 000●
-------------------------------------	-----	---	----------------------------	--	------------------------	------------------------	-----------------

Thank you for your attention!