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Why? Where?
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”Bayesian networks”, http://www.pr-owl.org/ [access 15.01.2016]
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Barbini et al. ”Bayesian Approach in Medicine and Health Management”
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Wenying Yan et al. ”Effects of Time Point Measurement on the Reconstruction

of Gene Regulatory Networks”, http://www.mdpi.com/ [access 13.01.2016]
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Sebastiani et al., Nature Genetics 37:435,2005
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Applications

• medical diagnosis

• gene expression data

• complex genetic models

• robot localization

• risk management in robotics

• credit scoring

• ...
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Continuous nodes

1. Challenges:

• no representation for all possible densities

(unlike CPTs in discrete BNs)

• inference issues

• complex distributions

2. Solutions:

• discretization

• Linear Models

• Gaussian approximation
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Discretization

1. Idea: continuous domain into a finite set of intervals

2. Methods: Equal Interval Width, Equal Interval Frequency, . . .

Select y∗ ∈ [y1, y2]

P(X ∈ [x1, x2] | y∗) =

∫ x2

x1

p(x | y∗)dy
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Discretization

1. Idea: continuous domain into a finite set of intervals

2. Methods: Equal Interval Width, Equal Interval Frequency, . . .

3. Limitations:

• loss of information

• trade-off: accuracy vs. computational cost O(dc)

4. Alternative: Linear Models
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Linear Models

Broad class of models that satisfy independence of casual influence:

influence of multiple causes can be decomposed into separate influences.

• the effect of parents (Y1, ...,Yn) on X can be summarized via linear function

f (Y1, ...,Yn) =
k∑

i=0

wiYi

where w are coefficients.

• no interactions between Yi ’s (only through f (Y1, ...,Yn))
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Linear Gaussian model

Definition

Let X be a continuous variable with continuous parents Y1, ...,Yk . We say that X

has a Linear Gaussian CPD if there are β0, ..., βk and σ2 such that:

p(X | y) = N (β0 + βTy , σ2)

X = β0 + β1y1 + ...+ βkyk + ε



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Linear Gaussian model

Definition

Let X be a continuous variable with continuous parents Y1, ...,Yk . We say that X

has a Linear Gaussian CPD if there are β0, ..., βk and σ2 such that:

p(X | y) = N (β0 + βTy , σ2)

X = β0 + β1y1 + ...+ βkyk + ε



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Linear Gaussian model

Definition

Let X be a continuous variable with continuous parents Y1, ...,Yk . We say that X

has a Linear Gaussian CPD if there are β0, ..., βk and σ2 such that:

p(X | y) = N (β0 + βTy , σ2)

X = β0 + β1y1 + ...+ βkyk + ε



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Linear Gaussian model

exams

IQ

p(IQ) = N (100, 15)

p(E | IQ) = N (15 + 0.6IQ, 10) = N (75, 10)

Definition

A Gaussian Bayesian network is a Bayesian network where all the variables are

continuous and where CPDs are linear Gaussians.
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Gaussian BN ⇒ joint Gaussian

Theorem

Let X be a linear Gaussian of its parents Y1, ...,Yk : p(X | y) = N (β0 + βTy ;σ2)

Assume, that Y1, ...,Yk are jointly Gaussian with distribution N (µ;Σ). Then:

• The distribution of X is a normal distribution p(X ) = N (µX ;σ2
X ) where:

µX = β0 + βTµ σ2
X = σ2 + βTΣβ

• The joint distribution over {Y ,X} is a normal distribution, where:

Cov [Yi ,X ] =
k∑

j=0

βjΣi ,j

⇒ A Gaussian Bayesian network defines a joint Gaussian distribution.
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Gaussian BN ⇐ joint Gaussian

Theorem

Let X = X1, ...,Xn and let P be a joint Gaussian distribution over X .

Given any ordering X1, ...,Xn over X , we can construct a Bayesian network graph G

and a Bayesian network B such that:

1. PaGi ⊆ X1, ...,Xi−1;

2. the CPD of Xi in B is a linear Gaussian of its parents;

3. G is a minimal I-map for P.



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Probability of being accepted to a german university

(MA programme) for international students form other EU-countries.

accepted

learned German

country of birth

exams

IQ study



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Probability of being accepted to a german university

(MA programme) for international students form other EU-countries.

accepted

learned German

country of birth

exams

IQ study



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Hybrid BNs

• continuous children with discrete (and continuous) parents

exams

IQ study

• discrete children with continuous (and discrete) parents

accepted

exams

learned German
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Continuous children with discrete parents

Definition

Let X be a continuous variable with discrete A = A1, ...,Am and continuous

Y = Y1, ...,Yk parents. We define the Conditional Linear Gaussian (CLG) model

as:

p(X | a, y) = N (wa,0 +
k∑

i=1

wa,iyi ;σ
2
a)

where w are coefficients.

• separate linear Gaussian model for each assignment to discrete parents

• defines a conditional Gaussian joint distribution [Lerner et al.,2001]
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Continuous children with discrete parents

exams

IQ study

p(IQ) = N (100, 15)

p(E | IQ, S = s1) = N (25 + 0.6IQ, 10) = N (85, 10)

p(E | IQ,S = s0) = N (−5 + 0.7IQ, 12) = N (65, 12)
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Discrete children with continuous parents

• Threshold (τ) which determines the change in discrete values

X binary {x0, x1} with parents Y1, ...,Yk :

f (Y1, ...,Yk) ≥ τ ⇒ P(X = x1) likely to be 1

f (Y1, ...,Yk) < τ ⇒ P(X = x1) likely to be 0

f (Y1, ...,Yk) = w0 +
∑k

i=1 wiYi

Definition

The CPD P(X |Y1, ...,Yk) is a logistic CPD if there are k + 1 weights w0,w1, ...,wk

such that:

P(x1|Y1, ...,Yk) = sigmoid(w0 +
k∑

i=1

wiYi )
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Discrete children with continuous parents

• Threshold which determines the change in discrete values

• Augmented CLGs [Lerner et al. (2001)]

Definition

Let A be a discrete variable with possible values a1, ..., am and let Y = Y1, ...,Yk

denote its continuous parents. We define the CPD in augmented Conditional

Linear Gaussian model as:

p(A = ai | y1, ..., yk) =
exp(wi ,0 +

∑k
l=1 wi ,lyl)∑m

j=1 exp(wj ,0 +
∑k

s=1 wj ,sys)



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Discrete children with continuous parents

Definition

A Bayesian network with all discrete variables having only discrete parents and

continuous variables having a CLG CPD is a Conditional Linear Gaussian

network.

accepted

examslearned German
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Exponential family

An exponential family is specified by:

• a sufficient statistics function τ

• a parameter space that is a convex set Θ of legal parameters

• a natural parameter function t

• an auxiliary measure A over X

Definition

An exponential family P = {Pθ : θ ∈ Θ} over set of variables X , where

Pθ(ξ) =
1

Z (θ)
A(ξ)exp{〈t(θ), τ(ξ)〉}

with partition function

Z (θ) =
∑
ξ

A(ξ)exp{〈t(θ), τ(ξ)〉}
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Univariate normal distribution

τ(x) = 〈x , x2〉 (1)

t(µ, σ2) = 〈 µ
σ2
,− 1

2σ2
〉 (2)

Z (µ, σ2) =
√

2πσexp

{
µ2

2σ2

}
(3)

Then,

P(x) =
1

Z (µ, σ2)
exp{〈t(θ), τ(X )} =

1√
2πσ

exp

{
− (x − µ)2

2σ2

}
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Product distribution

Definition

A factor in an exponential family: φθ(ξ) = A(ξ)exp{〈t(θ), τ(ξ)〉}

Definition

Let Φ1, ...,Φk be exponential factor families. The composition of Φ1, ...,Φk

is the family Φ1 × Φ2 × ...× Φk parametrized by

θ = θ1 ◦ θ2 ◦ ... ◦ θk ∈ Θ1 ×Θ2 × ...×Θk :

Pθ ∝
∏
i

φθi
(ξ) =

(∏
i

Ai (ξ)

)
exp

{∑
i

〈t(θ), τ(ξ)〉}
}

A Bayesian network with locally normalized exponential CPDs

defines an exponential family.
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Entropy

Measure of degree of disorder in a system (thermodynamics, R. Clausius, 1865)

Shannon’s Measure of Uncertainty - statistical entropy:

Definition

Let P(X ) be a distribution over a random variable X . The entropy of X is

HP(X ) = −EP [logP(X )]

small entropy⇒ probability mass on a few instances

large entropy ⇒ probability mass uniformly spread
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Entropy

Theorem

Let Pθ be a distribution in an exponential family defined by the functions τ and t.

Then

HPθ
(X ) = lnZ (θ)− 〈EPθ

[τ(X )], t(θ)〉

Theorem

Let P(X ) =
∏

i P(Xi | PaGi ) be a distribution consistent with a Bayesian network G.

Then

HP(X ) =
∑
i

HP(Xi | PaGi ) =
∑
i

∑
paGi

P(paGi )HP(Xi | paGi )
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Relative entropy

Complex distribution ⇒ approximation

Measure of inaccuracy: relative entropy (Kullback-Leibler distance)

Definition

Let Q and P be two distributions over random variables X1, ...,Xn.

The relative entropy of Q and P is:

D(Q(X1, ...,Xn) ‖ P(X1, ...,Xn)) = EQ

[
log

Q(X1, ...,Xn)

P(X1, ...,Xn)

]
where we set log(0) = 0.

•
∨

P,Q D(Q ‖ P) ≥ 0

• D(Q ‖ P) small ⇒ P close to Q ⇒ small loss of information

•
∨

P 6=Q D(Q ‖ P) 6= D(P ‖ Q)
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Relative entropy

Theorem

Consider a distribution Q and a distribution Pθ in an exponential family defined by

τ and t. Then

D(Q ‖ Pθ) = −HQ(X )− 〈EQ [τ(X )], t(θ)〉+ lnZ (θ)

Theorem

If P and Q are distributions over X consistent with a Bayesian network G, then

D(Q ‖ P) =
∑
i

∑
paGi

Q(paGi )D(Q(Xi , pa
G
i )) ‖ P(Xi | paGi )
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Projections

Project a distribution P onto family of distributions Q.

• I-projections

Q I = arg min
Q∈Q

D(Q ‖ P)

• M-projections

QM = arg min
Q∈Q

D(P ‖ Q)

In general: Q I 6= QM
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I-projections

Q I = arg min
Q∈Q

D(Q ‖ P) = arg min
Q∈Q

(−HQ(X ) + EQ [−lnP(X )])

• if complex graphical model

• high density where P is large

low density where P is small

• penalty for low entropy

• some simplification of computation is possible
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M-projections

QM = arg min
Q∈Q

D(P ‖ Q) = arg min
Q∈Q

(−HP(X ) + EP [−lnQ(X )])

• learning problem

• attempts to match the main mass of P:

• high density to the regions probable according to P

• high penalty for low density in these regions

• relatively high variance

• use of exponential form of the distribution may simplify the computation
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M-projections

Let P be a distribution over X .

Theorem

Let Q be an exponential family defined by τ and t. Then QM = Qθ if there is a set

of parameters θ such that

EQθ
[τ(X )] = EP [τ(X )]

Theorem

Let G be a Bayesian network structure. Then

QM(X ) =
∏
i

P(Xi | PaGi )
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Summary

1. Continuous and hybrid BNs have many applications

2. Challenges: representation, inference

3. Solutions: discretization, Linear Models, approximation

4. Exponential family - useful form

5. True distribution unknown or complex

⇒ entropy, relative entropy

6. Projections - find approximation



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Bibliography

1. Koller D. & Friedman N., 2009, Probabilistic Graphical Models. Principles and

Techniques., The MIT Press, Massachusetts, USA

2. Koller D., 2013, on-line course ”Probabilistic Graphical Models”,

https://class.coursera.org/pgm/lecture

3. Lerner et al., 2001, Exact Inference in Networks with Discrete Children of

Continuous Parent, p.319-328, UAI 2001

4. Pourret et al.,2008, Bayesian networks : a practical guide to applications, John

Wiley & Sons Ltd, ISBN: 978-0-470-06030-8, online:

http://bayanbox.ir/view/1741861298367825388/Olivier-Pourret-Patrick-Na-

Bruce-Marcot-Bay.pdf



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Bibliography

1. Friedman et al., 2000, Using Bayesian Networks to Analyze Expression Data,

Journal of Computational Biology, Volume7, No. 3/4

2. Lauritzen S. & Sheehan N., 2003, Graphical Model for Genetic Analyses,

Statistical Science 2003, Vol. 18,

No. 4, 489514



Introduction Gaussians Hybrid BNs Exponential family Entropy Relative entropy Projections Summary

Thank you for your attention!
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