Mathematische Grundlagen für Nebenfachstudierende

Übungsblatt 2

(Schneider, Plaß)

Wintersemester 15/16

Aufgabe 4 (Wiederholung: Abbildungen)

Sei $f: D \to W$ eine Abbildung mit $D = \{d_1, d_2, d_3, d_4\}$ und $W = \{w_1, w_2, w_3, w_4, w_5\}$ sowie $f(d_1) = w_2$, $f(d_2) = w_5$, $f(d_3) = w_4$, $f(d_4) = w_3$.

- a) Ist die Abbildung f injektiv, surjektiv oder gar bijektiv?
- b) Geben Sie $f^{-1}(\{w_1\})$ an.

Aufgabe 5 (Rechnen mit Vektoren)

Gegeben seien die Vektoren $\mathbf{x}=\left(\begin{array}{c} 3\\1 \end{array}\right)$ und $\mathbf{y}=\left(\begin{array}{c} 1\\2 \end{array}\right)$ sowie der Skalar $\lambda=1.5.$

Berechnen Sie (falls möglich)

- a) $\mathbf{x} + \mathbf{y}$
- b) $\mathbf{x} \mathbf{y}$
- c) $\lambda \cdot \mathbf{x}$
- d) $-\frac{1}{\lambda} \cdot \mathbf{x}$
- e) $\frac{1}{\mathbf{v}} \cdot \mathbf{x}$

und skizzieren Sie jeweils auch die entsprechende geometrische Veranschaulichung.

Aufgabe 6 (Orthogonale Vektoren)

- a) Gegeben seien die Vektoren $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ und $\mathbf{z} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{3} \end{pmatrix}$. Welche dieser Vektoren sind zueinander orthogonal?
- b) Berechnen Sie den zu $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ orthogonalen Vektor $\mathbf{y} = \begin{pmatrix} -2 \\ y_2 \end{pmatrix}$. Gibt es weitere Lösungen?

Aufgabe 7 (Länge und Abstand von Vektoren)

- a) Berechnen Sie den Abstand zwischen den Vektoren $\mathbf{x} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ und $\mathbf{y} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ Wie lässt sich dieser Abstand veranschaulichen?
- b) Berechnen Sie die Länge des Vektors $\mathbf{z} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$