

Statistische Software (R)

Paul Fink, M.Sc.

Institut für Statistik Ludwig-Maximilians-Universität München *Grafiken*

Leitmotiv bei Erstellung von Grafiken

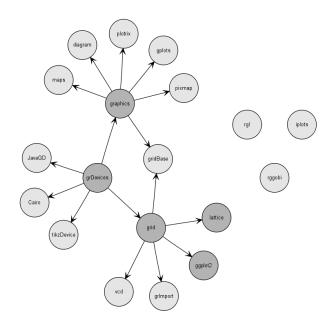
Sinnvolle, leicht zu verstehende Grafiken

Leitfragen:

- 1. Welchen Grafiktyp verwenden?
- 2. Ist der Inhalt der Grafik klar dargestellt?
- 3. Einsatz von (einheitlichen) Farben?
- 4. Ist der Text lesbar?
- 5. Legende?

Paul Fink: Statistische Software (R) SoSe 2015

Literatur


R Graphics Second Edition

von Paul Murrel

Link zu den im Buch dargestellten Grafiken und dem zugehörigem R-Code:

http://www.stat.auckland.ac.nz/~paul/RG2e/

Übersicht von Grafikpaketen (nicht vollständig)

- Die Grafikausgabe erfolgt in ein sogenanntes Gerät (Device)
- Die öffnende Funktion bestimmt Gerät
- Standardmäßig zur Verfügung stehen u.a.: bmp(), jpeg(), pdf(), png(), postscript(), x11() für Bildschirmfenster
- Zusatzpaket tikzDevice stellt Funktion tikzdevice() zur Verfügung.
- Tatsächliche Ausgabe bei Datei-Geräten erst nach Schließen

```
Neues Grafikfenster auf dem Bildschirm:
```

```
> x11()
```

Zeichnen der Dichte der Standard-Normalverteilung mit Grafikfunktion curve():

```
> curve(from = -3, to = 3, dnorm(x), main = "Dichte N(0,1)-Vtlg.")
```

Schließen des Geräts (Fenster):

```
> dev.off()
```

Paul Fink: Statistische Software (R) SoSe 2015

Paul Fink: Statistische Software (R) SoSe 2015

Grafikausgabe - PDF-Datei

Anlegen der PDF-Datei *dichteN01.pdf* im aktuellen Arbeitsverzeichnis:

```
> pdf(file = "dichteN01.pdf")
```

Zeichnen der Dichte der Standard-Normalverteilung mit Grafikfunktion curve():

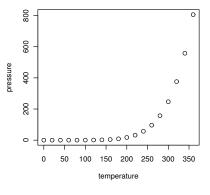
```
> curve(from = -3, to = 3, dnorm(x), main = "Dichte N(0,1)-Vtlg.")
```

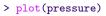
Schließen des Geräts (Tatsächliches Erstellen des Datei-Inhalt):

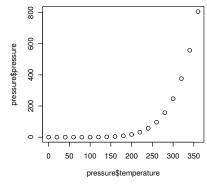
```
> dev.off()
```

Traditionelle Grafiken (graphics Paket)

Zwei Klassen von Grafik-Funktionen

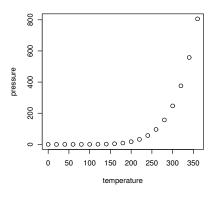

- *High-level* Grafik-Funktionen als vorgefertigte Grafiken: Boxplots, Histogramme, Streu-, Balkendiagramme, . . .
- Low-level Grafik-Funktionen als Basis aller Grafiken: Punkte, Linien, Rechtecke, Segmente, Beschriftung, Koordinaten-Achsen, ..., ...
 - \Longrightarrow Grafiken nach Baukasten-Prinzip selbst erstellen oder High-level Grafiken erweitern

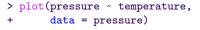

plot() ist wichtigste traditionellen high-level Funktion

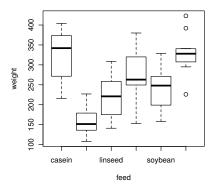

Oft einfachste Variante um Basis-Grafiken zu erstellen

Je nach Datentyp der übergebenen Objekte liefert die Funktion eine andere Grafik:

Die plot() Funktion ist generisch.


> plot(pressure\$temperature, pressure\$pressure)


Paul Fink: Statistische Software (R) SoSe 2015


Paul Fink: Statistische Software (R) SoSe 2015

10

Beispiele – Grafiken

Wichtige High-Level Grafikfunktionen

Funktion	Datentyp(en)	Beschreibung
plot() plot(), pairs() sunflowerplot()	numeric (, numeric) data.frame numeric, numeric	Scatterplot Scatterplot Matrix Scatterplot (diskret)
plot() barplot() barplot()	factor oder 1-dim. table numeric (Höhe der Balken) matrix	Barplot Barplot Barplot
hist()	numeric	Histogramm
boxplot() plot()	(list of) numeric factor, numeric	(bedingte) Boxplot bedingte Boxplots
plot() plot() mosaicplot()	factor, factor 2-dim. table n-dim. table	Spineplot Mosaic plot Mosaic plot

Das type Argument in plot()

Anpassung von Aussehen über Argumente der Grafikfunktion, z.B. Titel, Achsenbeschriftung, Farbe, . . .

Argument	Beschreibung	
main	Haupttitel der Grafik	
xlab, ylab	Titel der X-Achse bzw Y-Achse	
xlim, ylim	Vektor mit Minimum/Maximum für Werte	
•	in der Plot-Region in X bzw. Y Richtung	
cex	Generelle Vergrößerung	
<pre>cex.main, cex.axis,</pre>	Vergrößerung von Titel, Achsenbeschriftung	
cex.lab	und -titeln relativ zu cex	
col	Farbe der Objekte in der Plot-Region	
axes	Bei FALSE werden keine Achsen eingezeichnet	
<pre>xaxt="n", yaxt="n"</pre>	Kein Einzeichnen von X bzw. Y-Achse	
lty, lwd	Linientyp, Linienbreite	

13