Statistik II Übungsblatt 5

für Studierende der Soziologie und Nebenfachstudierende

(Augustin, Brandt, Plaß)

Sommersemester 2015

Aufgabe 1

Der UEFA (Union of European Football Associations) wurde vorgeworfen, das Auslosungsverfahren der Gegnerkonstellationen im Viertelfinales der Champions League 2013 manipuliert zu haben. Die ausgelosten Konstellationen Málaga - Borussia Dortmund, Real Madrid - Galatasaray, Paris Saint Germain - Barcelona, Bayern München - Juventus, zeichnen sich dadurch aus, dass die "großen" vier Mannschaften (Dortmund, Real Madrid, Barcelona, Bayern München) nicht aufeinander treffen.

- a) Berechnen Sie die Wahrscheinlichkeit dafür, dass bei zufälliger Auswahl der Konstellationen die "großen" vier Mannschaften nicht aufeinandertreffen.
- b) Ein Sportjournalist schätzt die Wahrscheinlichkeit einer Manipulation auf 30%. Berechnen Sie die zugehörige a posteriori Wahrscheinlichkeit sowie die posterior odds. Interpretieren Sie Ihre Ergebnisse.
 - **Hinweis:** Lesen Sie dazu den Artikel von Henk Tijms*, welcher den Manipulationsvorwurf diskutiert, indem eine Bayesiansiche Denkweise herangezogen wird.
- c) Leiten Sie den dort betrachteten Zusammenhang zwischen posteriori odds und priori odds her.

*Henk Tijms: Teaching Note - Was the Champions League Draw Rigged?, http://personal.vu.nl/h.c.tijms/TeachingNoteBayes.pdf, aufgerufen am 13.05.2015

Aufgabe 2 (Selbststudium)

Ein Labor hat einen Alkoholtest entworfen, der von der Polizei genutzt wird. Vom Test ist bekannt, dass

- in 95% der Fälle der Test positiv reagiert, wenn die Person tatsächlich betrunken ist.
- in 97% der Fälle der Test negativ reagiert, wenn die Person nicht betrunken ist.

Aus den bisherigen Erfahrungen weiß man, dass 60% der kontrollierten Personen tatsächlich betrunken sind.

Wie groß ist die Wahrscheinlichkeit, dass eine Person tatsächlich betrunken ist, wenn der Test positiv reagiert?

Aufgabe 3 (Selbststudium)

Der Weg von Universitätsabsolventen zu ihrer ersten Arbeitsstelle soll mit Hilfe eines (homogenen) Markov-Modells analysiert werden. Dabei werden die folgenden Zustände und Übergangswahrscheinlichkeiten zwischen den Zuständen betrachtet:

a_1 : in Universitätsausbildung				i+1		
a_2 : arbeitslos gemeldet			a_1	a_2	a_3	a_4
a_3 : in Praktikum oder Fortbildungsmaßnahme		a_1	0	0.2	0.4	
	i	a_2	0	0.2	0.6	
		a_3	0	0.3	0	
a_4 : an erster Arbeitsstelle		a_4				1

- a) Vervollständigen Sie die Matrix der Übergangswahrscheinlichkeiten.
- b) Stellen Sie den zugehörigen Übergangsgraphen auf.
- c) Diskutieren Sie kurz die Markov-Eigenschaft für dieses Beispiel.

Aufgabe 4

Ein Zufallsexperiment besteht im Werfen einer Münze mit $\Omega = \{Kopf', Zahl'\}$. Das Experiment wird durch die Zufallsvariable X beschrieben mit

$$\{X = 1\} = \text{,Kopf}^{\circ}, \qquad P(\{X = 1\}) = p,$$

 $\{X = 0\} = \text{,Zahl}^{\circ}, \qquad P(\{X = 0\}) = 1 - p.$

Nun werde die Münze unabhängig viermal hintereinander geworfen, wobei der i-te Wurf durch die Zufallsvariable X_i , $i=1,\ldots,4$ beschrieben wird.

Die Zufallsvariable Z wird definiert als $Z:=\sum_{i=1}^4 X_i$.

- a) Interpretieren Sie die Zufallsvariable Z.
- b) Welche Werte kann Z annehmen?
- c) Berechnen Sie die Wahrscheinlichkeiten für alle möglichen Werte von Z.
- d) Zeichnen Sie die Verteilungsfunktion von Z für $p = \frac{1}{2}$ und $p = \frac{1}{3}$.
- e) Bestimmen Sie aus den Verteilungskfunktionen für $p = \frac{1}{2}$ und $p = \frac{1}{3}$ die Wahrscheinlichkeiten, mindestens zwei Mal Kopf zu erhalten.