THE TWO CULTURES: A DISCUSSION

Katrin Newger Supervisor: Christoph Jansen M.Sc. and Dipl.-Math. Georg Schollmeyer June 27, 2015

Department of Statistics, LMU Munich

- 1. The Two Cultures
- 2. Breiman's Argument
- 3. Discussion
- 4. Personal Impressions and Conclusion

THE TWO CULTURES

Assumptions:

- Stochastic model
- · Distribution of residuals
- · Further model specific assumptions

Goal:

Function f(x) that minimizes loss L(Y, f(x))

Methods:

- Support vector machines
- Random forests
- · Artificial neural networks

BREIMAN'S ARGUMENT

- · Critical model assumptions
- $\cdot\,$ Conclusions about model, not about nature
- $\cdot \,$ Wrong model \rightarrow wrong conclusions about nature
- · Algorithmic models only assume iid. variables

"A few decades ago (...) the belief in data models was such that even simple precautions such as residual analysis or goodness-of-fit tests were not used" (Breiman 2001, p. 199)

- $\cdot\,$ Necessity of checking the model's fit
- $\cdot\,$ Discussion of the fit is superficial
- · Most popular: goodness-of-fit tests, residual analysis

Goodness-of-Fit Tests

- $\cdot\,$ Not useful if direction of alternative not precisely defined
- \cdot Extreme discrepancy to the data is needed

Residual Analysis

 \cdot For more than four dimensions: interactions between variables \rightarrow manipulation of residual plots

Algorithmic modeling: cross-validation is standard procedure

- $\begin{array}{l} \cdot \mbox{ Different models} \rightarrow \mbox{ different assumptions} \\ \rightarrow \mbox{ different conclusions} \end{array}$
- $\cdot\,$ Neither model is able to trump
- \cdot Further problem: variable selection based on model
- · Algorithmic modeling: only iid. assumption

- $\cdot \,$ Common assumption: $n \rightarrow \infty$ never fulfilled
- Testing on 5% level is arbitrary ("suspect way to arrive at conclusions", Breiman 2001, p. 203)
- Algorithmic modeling: no inference

- · Originally: $n \gg p$ \leftrightarrow nowadays: $p \gg n$
- $\cdot\,$ Data models become too complex
- \cdot Common procedure: reducing dimensionality (e.g. principal component analysis) \rightarrow loss of information
- Algorithmic modeling: the more variables the more information

- · Prediction is more important than interpretation—always
- · If prediction is bad, how can interpretation be good?
- · Breiman's experience: algorithmic models are best predictors

 \cdot Everyone's choice which model is best

"The best solution could be an algorithmic model, or maybe a data model, or maybe a combination" (Breiman 2001, p. 206)

 \cdot Openness for new methods

DISCUSSION

"[The Bias] has to be lurking somewhere inside the theory" (Brad Efron, in Breiman 2001, p. 219)

- · In algorithmic modeling, small variance at cost of bias?
- · Breiman avoids answer

- $\cdot\,$ Does not concern prediction
- $\cdot\,$ Just as well in algorithmic models
- $\cdot\,$ Main difference between models: distribution
- · Breiman manipulates reader

- Why not use known information (e.g. distribution)?
- $\cdot\,$ Critical iid. assumption in data models and algorithmic models
- · Alternatives if iid. assumption is violated?

- · Rivaling abilities of models
- $\cdot\,$ Often interpretation required
- \cdot Prediction sometimes indirectly related to data

"The whole point of science is to open up black boxes, understand their insides, and build better boxes for the purposes of mankind" (Brad Efron, in Breiman 2001, p. 219)

PERSONAL IMPRESSIONS AND CON-CLUSION

Leo Breiman

Statistical Modeling: The Two Cultures.

Statistical Science 16(3), 2001: 199–231.

📎 T. Hastie, R. Tibshirani and J. Friedman The Elements of Statistical Lernaning. Data Mining, Inference and Prediction. Heidelberg: Springer, 2009.

QUESTIONS AND DISCUSSION