Aufgabe 1 (Ein Beispiel aus der Produktionsplanung)

Ein Unternehmer stelle die Produkte P_1 und P_2 her. Die dazu benötigten Mittel (Maschine, Rohstoffe, Arbeitskraft) sind wie folgt beschränkt:

• Maximale Maschinenlaufzeit: 1200 h

• Maximal verfügbare Rohstoffmenge: 3000 Mengeneinheiten (ME)

• Maximal verfügbare Arbeitszeit: 125 h

Die Mittel verteilen sich wie folgt auf je eine ME des Produkts P_i , i = 1, 2:

	P_1	P_2
Maschine	3 h	2 h
Rohstoff	5 ME	10 ME
Arbeitskraft	0 h	0.5 h

- a) Beschreiben Sie die Menge $Z \subset \mathbb{R}^2$ aller Mengenaufteilungen auf P_1 und P_2 , die mit den vorgegebenen Beschränkungen verträglich sind! Um welche Art von Menge handelt es sich bei Z?
- b) Veranschaulichen Sie Ihr Ergebnis graphisch!
- c) Welche Produktionsmengen (d.h. Elemente von Z) nutzen die vorhandenen Produktionsfaktoren so weit wie möglich aus? Was sind die Extremalpunkte von Z?

Aufgabe 2

Sei (Ω_n, Σ_n) ein Messraum mit $|\Omega_n| = n$ und $\Sigma_n := 2^{\Omega_n}$, wobei $n \in \mathbb{N}$.

(a) Zeigen Sie: Die Menge \mathcal{P}_n aller Wahrscheinlichkeitsmaße auf (Ω_n, Σ_n) ist bijektiv abbildbar auf den Einheitssimplex

$$\Delta_{n-1} := \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = 1 \right\}$$

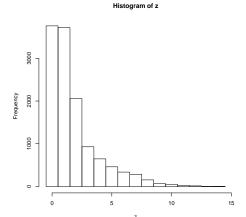
- (b) Stellen Sie die Menge Δ_2 graphisch dar.
- (c) Seien die Punkte $P_1 = (1, 0, ..., 0)', ..., P_n = (0, ..., 0, 1)' \in \Delta_{n-1}$ gegeben. Zeigen Sie:

$$\operatorname{conv}(\{P_1,\ldots,P_n\}) = \Delta_{n-1}$$

Aufgabe 3

Betrachtet werde das folgende Histogramm, das Auskunft über die Verteilung der Anzahl an Schadensfällen pro Versichertem geben möge (N=12500). Unter der Annahme, dass die Daten i.i.d. Poissonverteilt sind, wird der Erwartungswert geschätzt; man erhält $\hat{\lambda}=1.7830$. Sicherheitshalber wird auch noch die Stichprobenvarianz s^2 berechnet, das Ergebnis ist 4.3056. Wie erklären Sie sich diese Diskrepanz?

28.05.2015 Seite 1



Aufgabe 4 (Mischen von Normalverteilungen)

Simulieren Sie in R 1000 Ausprägungen (x_1, \ldots, x_{1000}) der standardnormalverteilten Zufallsvariable $X \sim N(0,1)$ und 500 Ausprägungen (y_1, \ldots, y_{500}) der normalverteilten Zufallsvariable $Y \sim N(10,3)$. Fassen Sie die Ausprägungen anschließend in einem Vektor $z := (x_1, \ldots, x_{1000}, y_1, \ldots, y_{500})$ zusammen.

- a) Plotten Sie basierend auf z ein Histogramm der relativen Häufigkeiten (mit Säulenbreite=1).
- b) Plotten Sie in das selbe Bild die Dichtefunktion einer $N(\bar{z}, s_z^2)$ -verteilten Zufallsvariable.
- c) Plotten Sie in das selbe Bild die Dichtefunktion einer $\frac{2}{3}N(0,1) + \frac{1}{3}N(10,3)$ -verteilten Zufallsvarable.
- d) Vergleichen Sie Ihre Ergebnisse aus a), b) und c). Wie beurteilen Sie die Situation?
- e) Variieren Sie die Parameter μ und σ^2 der Verteilung von Y und verschaffen Sie sich einen Eindruck über die Flexibilität von Mischverteilungen.

28.05.2015 Seite 2