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Abstract

The likelihood concept is a practically most relevant framework for statistical infer-

ence. It can be used to fit models to given data, derive point and interval estimates

for parameters or conduct testing, to name possible fields of application. Within

this light, the focus of this work is to systematically introduce the likelihood con-

cept, point out the related methods for statistical inference and show shortcomings

and anomalous behaviour. Inference is also discussed in the context of multivariate

likelihood and possibilites for dealing with nuisance parameters are shown. Lastly,

the likelihood concept is compared to the Bayesian and frequentist approach and it

is shown how the likelihood concept is discussed in the scientific literature.
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2 THE LIKELIHOOD CONCEPT

1 Motivation

Without any doubt, the likelihood concept is a comprehensive inference approach of major

practical relevance. It can be used to fit models to given data, derive point and interval

estimates for parameters or conduct testing, to name some of the fields of application.

Within this light, the aim of this work is threefold:

Firstly, section 2 aims to systematically introduce the likelihood concept: its underlying

basic principles and its methods for statistical inference. Furtheremore, this section shows

examples for critical or anomalous behaviour of the likelihood function and the strong

likelihood principle. In section 3, inference is discussed within the context of multivariate

likelihood and possibilites for dealing with nuisance parameters are shown and critically

discussed.

Secondly, section 4 deals with the history of the likelihood concept as well as how it can

be compared to the Bayesian or frequentist approach. Additionally, it is shown how the

likelihood concept is discussed in scientific literature.

Thirdly, throughout this work, contributions and hints from the discussion of the related

seminar “Probability and Other Concepts of Uncertainty” which took place in March

2014 at the University of Munich are also used. To highlight these discussion related text

passages, they are marked with [*].

This work takes especially into account sources by Pawitan [16] and Edwards [6].

2 The Likelihood Concept

2.1 Likelihood and Uncertainty

Both, probability and likelihood are concepts for dealing with uncertainty. Probabil-

ity quantifies uncertainty of outcomes of random variables. Hence, when probability is

described by parametric models, it quantifies the uncertainty of outcomes of random vari-

ables given the parameters of the assumed probability model.

This provides the link to the likelihood approach. When the parameters of such models

are not known, but realizations of the corresponding random variables are available, the

likelihood function quantifies the uncertainty of the parameters taking particular values,

given the observed realizations.

In a Bayesian context, probability in terms of prior and posterior distributions is different.
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2 THE LIKELIHOOD CONCEPT

The “prior probability” quantifies the previous knowledge about the uncertainty of the

parameter, the “posterior probability” quantifies the uncertainty of the parameter given

the prior knowledge and the observed realizations.

The foundation of the likelihood concept is the likelihood function. Below, the likelihood

function is defined more formally. Hence, the link between likelihood and parametric

probability models can be seen more clearly.

Likelihood Function

The likelihood function is a function of an unobserved parameter (here: λ) given a sample

(here: x).

L(λ|x) = P(x|λ)

The unobserved parameter λ refers to a probability model P(x|λ) which is assumed for

the data x. This underlying probability model can be either discrete or continuous. In

the discrete case, the likelihood function is defined by a discrete probability function

L(λ|x) = P(X = x|λ),

in the continuous case, it is built on a continuous density

L(λ|x) = f(x|λ).

The parameter λ does not need to be scalar, inference based on multivariate likelihoods

is especially discussed in section 3.

The conventions for notation that we use today go back to Ronald Aylmer Fisher. He

started denoting observations with Latin letters and unobserved parameters with Greek

letters [11].

Combination of Likelihoods

Due to its definition, likelihoods can be easily combined [16]. When there are independent

observations x = (x1, ..., xm) and y = (y1, ..., yn) with assumed probability models PX(λ|x)
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2 THE LIKELIHOOD CONCEPT

and PY (λ|y) which are based on the same parameter, the combined likelihood can be

specified by the product of the likelihoods referring to the two probability models:

L(λ|x, y) = LX(λ|x) · LY (λ|y)

2.2 Basic Principles of Likelihood Inference

The likelihood function now can be used to draw conclusions about the unknown param-

eters that is to say to conduct statistical inference. In the following, some basic principles

of likelihood inference are introduced. These deal with the information content in sam-

ples and how conclusions can be drawn from these samples when likelihood inference is

conducted.

Sufficiency Principle

When x1 and x2 depict samples from an experiment X, and T (x1) = T (x2) are identical

and minimal sufficient statistics from the two samples, the sufficiency principle proves,

that the results from statistical inference on the two samples are equal [16]. To follow

Pawitan’s notation, where evidence of an experiment X with its corresponding outcome

xi is formalized as Ev(X, xi), i. e.

Ev(X, x1) = Ev(X, x2).

Conditionality Principle

Before introducing the conditionality principle, the term “mixture experiment” needs to

be clarified. A mixture experiment is an experiment, which is conducted in two (or more)

stages. At a first stage an experiment creates an outcome. This outcome influences which

of a number of experiments at a second stage is conducted. The outcome of the second

experiment is then the sample of interest.

Now, when x is a sample from a mixture experiment X and xi is a sample from the actually

performed experiment Xi then the conditionality principle proves, that the results from

the statistical inference should be conditioned on the experiment that has actually been

5



2 THE LIKELIHOOD CONCEPT

performed, i. e.

Ev(X, x) = Ev(Xi, xi).

This implies that the structural component of the experiment is not to be considered

for statistical inference. To get a better understanding of the conditionality principle,

consider the following example

Example by Pawitan

A mixture experiment M is conducted with two measuring devices which perform experi-

ments M1 and M2 at a second stage. On a first stage, one of the two devices is arbitrarily

chosen P(M1) = P(M2) = 1
2
. The experiments on the second stage are modeled by normal

distributions: M1 ∼ N (µ, 1), M2 ∼ N (µ, 4).

These two probability models are the models we have to choose when conditioning on

the experiment that has actually been performed. When we take into account the whole

structure of the experiment, we will obtain a two-component Gaussian mixture model

M ∼ 1
2
N (µ, 1) + 1

2
N (µ, 4).

This makes a difference, and this difference can be seen, when we assume that we have

performed the experiment and received an observation x = 3 from measuring device M2.

When we intend to test the hypothesis H0: µ = 0 vs. H1: µ > 0, we can perform an

exact test on the given probability models. Hence, we will receive the following p-values:

• pM = P(x > 3|µ = 0) =
∫∞

3
f(x|µ)dx = 0.0341

• pM1 = P(x > 3|µ = 0,M1) =
∫∞

3
fM1(x|µ)dx = .0668

• pM2 = P(x > 3|µ = 0,M2) =
∫∞

3
fM2(x|µ)dx = .0013

Now, it is clear that it makes a difference when we condition on the experiment that has

actually been performed, because the p-value for the whole experiment and the p-value

of the actually conducted experiment are differing from each other. In our example, we

know that experiment M2 has been performed, hence the conditionality principle states

we have to use pM2 . The test situation is also shown in figure 1. The p-values are the area

under the density curves to the right of the experiments result (dashed line). [1][4][16]

In the following, the weak and the strong likelihood principle are introduced. These princi-

ples describe how conclusions can be drawn from likelihood functions that are proportional

to each other.
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Figure 1: Test Situation

Weak Likelihood Principle

Assuming that we have two samples x1 and x2 from an experiment X and that their

corresponding likelihoods share a common parameter λ and are proportional to each

other

LX(λ|x1) ∝ LX(λ|x2),

the weak likelihood principle proves, that the results of statistical inference based on

x1 and x2 are the same. The weak likelihood principle is equivalent to the sufficiency

principle [5][16].

Strong Likelihood Principle

For the strong likelihood principle we assume that there are samples x1 and x2 from

different experiments X1 and X2 as well as their likelihoods share a common parameter

λ and are proportional to each other.

LX1(λ|x1) ∝ LX2(λ|x2)
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Then the strong likelihood principle states that the results of inference based on x1 and x2

are the same. Birnbaum’s theorem proves that the strong likelihood principle is equivalent

to the sufficiency principle and the conditionality principle [2]. However it can be shown

that the strong likelihood principle does not always work.

2.3 Limits of the Strong Likelihood Principle

Lindley and Phillips [13] describe a Bernoulli process experiment, in which the likelihood

principle is violated. A coin is tossed 12 times, the outcome of the experiment is x =

(x1, ..., x12) = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1), where 1 depicts the coin fell on the up side, 0

that it fell on the bottom side. We want to test, if the coin is fair, i. e. H0 : π = 1
2

vs. H1 : π > 1
2
. However, we do not know, how the number of coin tosses has been

determined. In the following, we will discuss two possible assumptions:

Binomial Model

It could be assumed, that the number of coin tosses was predetermined. In this case, we

can describe the corresponding probability model by a binomial distribution and hence,

we can derive the likelihood:

Lb(π|x) =

(
n∑n
i=1 xi

)
π
∑n
i=1 xi(1− π)n−

∑n
i=1 xi =

(
12

9

)
π9(1− π)3

In this case, the parameter π stands for the probability of the coin falling on the bottom

side.

From the binomial probability model, we can also calculate the p-value for the test in this

situation:

pb = P(
n∑
i=1

xi ≥ 9|π =
1

2
) =

((
12

9

)
+

(
12

10

)
+

(
12

11

)
+

(
12

12

))(
1

2

)12

=
299

4096

Negative Binomial Model

However, it could also be assumed, that the number of coin tosses is determined depending

on the outcomes of the experiment. We could assume that the experiment was supposed

to stop, after the coin fell three times on the up side. In this case, we can describe the
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situation by a negative binomial distribution and again we can easily derive the likelihood

function from the corresponding probability model

Lnb(π|x) =

(
n− 1∑n
i=1 xi

)
π
∑n
i=1 xi(1− π)n−

∑n
i=1 xi =

(
11

9

)
π9(1− π)3.

The way the negative binomial model is used here, the parameter π is the same as in the

previous binomial model and stands for the probability of the coin falling on the bottom

side. Thus, both likelihood functions depend on the same parameter and are proportional

to each other. However, the results from statistical inference differ, as the p-value for the

test in this situation does not match the one in the above example:

pnb = P(
n∑
i=1

xi ≥ 9|π =
1

2
) = 1− P(

n∑
i=1

xi ≤ 8|π =
1

2
)

= 1−
8∑
i=0

(
i+ 3− 1

i

)
π3(1− π)i =

134

4096
6= 299

4096
.

Hence, in this case, the strong likelihood principle is violated. [13]

At this stage, I would also like to point out that it is possible to construct counterexamples

against the conditionality principle, see e.g. Helland [12]. Moreover, I would like to

mention that on the one hand, it is possible to base inference on such principles as

described above, but on the other hand it is not explicitly necessary to do so and thus,

the counterexamples of these principles must be seen within the light of when inference

is based on them, one has to keep in mind that they might not be applicable in any

situation.

2.4 Methods of Likelihood Inference

After introducing some key principles of likelihood inference, below applicable methods

of statistical inference based on the likelihood function will be described. This is to say

methods for deriving point estimates (Maximum Likelihood Approach), interval estimates

based on the likelihood ratio as well as interval estimates and tests based on asymptotic

distribution assumptions (Wald-, score-, likelihood ratio tests and intervals).
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Maximum Likelihood

The maximum likelihood method is a technique for deriving point estimates for a param-

eter of interest based on the likelihood function. The maximum likelihood estimate is the

value at which the likelihood function takes its maximum.

λ̂ML = arg max
λ

L(λ|x) = arg max
λ

logL(λ|x)

Because of the monotonic characteristics of the log function, the maximum of the likeli-

hood function and the maximum of the log likelihood function are the same. This can

be an advantage for analytically deriving the maximum likelihood estimate from the log

likelihood function when this is not possible or very difficult for the likelihood function

itself.

Likelihood Ratio

Before describing, how interval estimates can be gained from a likelihood function, the

term likelihood ratio shall be explained. The likelihood ratio can be used to compare

different values λ1 and λ2 for a given likelihood function.

Λ =
L(λ1|x)

L(λ2|x)

It can be interpreted as a degree of support for the hypothesis λ = λ1 against the hypoth-

esis λ = λ2. When the likelihood ratio Λ > 1, there will be more support for λ1 over λ2,

if Λ < 1 there will be more support for λ2 over λ1, respectively.

The likelihood ratio is invariant under bijective transformations of the data y = f(x):

L(λ1|y)

L(λ2|y)
=
L(λ1|x)

L(λ2|x)

In the following, we can see how the likelihood ratio can be used to derive interval estimates

based on a likelihood function.

10



2 THE LIKELIHOOD CONCEPT

Likelihood Interval Estimates

For a given point estimate λ̂, the likelihood ratio will provide such an interval estimate

by defining a set of values λ for which the likelihood ratio of λ and λ̂ is greater than a

predetermined constant c which controls the width of the interval.

{λ :
L(λ|x)

L(λ̂|x)
> c}

Pawitan mentions that these intervals can only be constructed when λ is scalar. Moreover,

it is also not clear how to objectively determine the constant c, as the likelihood itself is not

calibrated [16]. However, this interval estimate is a direct likelihood based estimate and

no further assumptions on the calibration of the likelihood are made. Still, for practical

concerns, it makes sense to constitute further assumptions.

Asymptotic Likelihood Inference

To calibrate the likelihood, we can make assumptions on the asymptotic distributions of

some deductions of the likelihood function. These deductions are as already mentioned

in the previous example, the likelihood ratio, moreover, the score function as well as the

maximum likelihood estimate and asymptotic distributions can be gained by the central

limit theorem.

The likelihood ratio is asymptotically χ2 distributed with one degree of freedom:

2 log
L(λ̂)

L(λ)
≈ J(λ̂)(λ− λ̂)

2 as∼ χ2(1)

This can be used to calculate “highest likelihood” interval estimates

{λ : 2 log
L(λ̂)

L(λ)
≤ χ2

1−α(1)},

as well as to perform the likelihood ratio test, which is in its two sided case:

11



2 THE LIKELIHOOD CONCEPT

φΛ(x) =

1, TΛ > χ2
1−α,1

0, sonst
.

The score function is asymptotically normally distributed:

S(λ̂)
as∼ N (0, J(λ̂)).

The interval estimates based on this distribution assumption are called score intervals

{λ : |S(λ)| ≤ z1−α
2

√
J(λ̂)},

the related test is referred to as score test, which is in its two sided case:

φS(x) =

1, |TS| ≥ z1−α
2

0, sonst
.

Lastly, the maximum likelihood estimate itself is also asymptotically normally distributed

λ̂
as∼ N (λ̂, J(λ̂)−1).

The interval estimates based on this distribution assumption are called “Wald” intervals

[λ̂− z1−α
2
(J(λ̂))−

1
2 , λ̂+ z1−α

2
(J(λ̂))−

1
2 ],

the related test is referred to as “Wald” test, which is in its two sided case:

φW (x) =

1, |TW | ≥ z1−α
2

0, sonst

In comparison to the interval estimates directly based on the likelihood function without

any further assumptions, these three approaches are practically more relevant, as they

allow to objectively set a limit for the width of the interval and hence, allow to interpret

the intervals in a “probabilistic” sense [16].

12



2 THE LIKELIHOOD CONCEPT

2.5 Anomalous Behaviour

Now that some methods for application of the likelihood concept have been shown, in

the following two examples, it can be seen that the likelihood concept is not always

providing useful inferential results. Below, it is shown how the likelihood function can

react anomalously when multiple maxima or singularities occur.

Multiple Maxima

Edwards describes an example, in which a Cauchy model with fixed scale parameter 1

and unknown location parameter λ is used [6].

f(x|λ) =
1

π(1 + (x− λ)2)

We have two data points x1 = −15, x2 = 15 and we are interested in a point estimate

for the parameter λ. Edwards argues, that as the Cauchy density is symmetrical and we

have only two observations, there is only one useful estimate for λ, i. e. the arithmetic

mean of x1 and x2: λ̂ = x1+x2
2

. However, when we look at the likelihood function of the

model (see figure 2), we can see, that this estimate does not get maximum support at

all. As maximum likelihood estimates we receive the two values x1 and x2. Thus, as

these estimates are strongly differing from the sole useful estimate (the aritmetic mean)

the maximum likelihood estimate is not useful in this case. The models for the three

estimates can be seen in figure 3. [6]

Singularities

Another example for anomalous behavour is described by Murphy and Bolling [14] [6]. In

their article, they describe, that in likelihood functions of single components of mixture

distributions which only contain one single observation, singularities can occur. This can

be illustrated in the following example. Assume, we have a Gaussian mixture model

with density function f(x|µ1, µ2, σ
2
1, σ

2
2, π) = 200

201
N (20, 1) + 1

201
N (30, 1). This means,

we have two components that both follow a normal distribution and that are highly

unequally mixed (π = 200
201

). Now we obtain a sample from this distribution and want

to use the expectation-maximization algorithm to fit a Gaussian mixture model to the

data. When the sample now suggests that we have only one observation in one of two

13
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Figure 4: Two Component Gaussian Mixture Model

assumed components (see figure 4), the problem occurs. The likelihood function for the

component with the single observation, as can be seen in figure 5 shows a singularity at

the point at which µ meets the observed value and σ2 = 0. This means that the point

estimate σ2 = 0 gets infinite support by the likelihood function. However, variance to

be zero is an unacceptable assumption. Still this example has practical relevance. When

the expectation-maximization algorithm is used, examples like this can happen, especially

when a large number of components is assumed for few observations.

3 Multivariate Likelihood, Nuisance Parameters

The parameter λ does not necessarily need to be scalar, it can also be a vector λ =

(λ1, ..., λn). An illustration of multivariate likelihoods has already been shown in the pre-

vious example. Inference for such multidimensional models can be difficult, when it is

conducted for all parameters at once [16]. Sometimes there is also just one (or a few)

parameter(s) of interest and inference is only to be relied on these. In this light the follow-

ing section provides a repertoire of methods for the establishment of likelihood functions

for multivariate models in which only the parameters of interest λi are captured. Those

parameters that are not of interest λ−i = {λ1, ..., λn}\λi are referred to as “nuisance”
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parameters.

3.1 Estimated Likelihood

A simplistic approach to achieve this goal is to define the so called estimated likelihood.

The estimated likelihood is derived from the likelihood function of all parameters, by

replacing the nuisance parameters each by their single maximum likelihood estimate.

Le(λi) = L(λi, λ̂−i|x) mit λ̂−i = {λ̂1, ..., λ̂n}\λ̂i

Now, inference on the parameter of interest can be conducted from the estimated likeli-

hood. However this approach neglects the fact that the nuisance parameters are unknown

and hence, this procedure can be problematic when applied [16].

3.2 Profile Likelihood

The profile likelihood concept offers a different approach. It does not replace the nuisance

parameters by single maximum likelihood estimates, instead it maximizes the likelihood

function for all nuisance parameters at once.

Lp(λi) = max
λ−i

L(λ1, ..., λn|x) mit λ−i = {λ1, ..., λn}\λi

This approach involves multivariate optimization. This can be either done analytically

or by using numerical methods, e.g. by using the Newton-Raphson method, the Quasi-

Newton method or the Simplex method by Nelder and Mead.

Inference on the parameter of interest can then be based on the profile likelihood. In some

cases, estimated likelihood and profile likelihood are equal.

3.3 Limits of the Profile Likelihood Concept

However, as the profile likelihood concept can be considered better than the estimated

likelihood approach, there is also a drawback which shall be discussed here. The profile

likelihood can be severely biased in some cases, as the following example by Neyman and

Scott shows [15] [16]. They describe a stratified dataset. There are N levels. For each
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level, we have two observations and for each level we assume a normal distribution model

with specific location parameter µi, but the same variance in all levels σ2. This means

that in total we have N + 1 parameters: θ = {µ1, ..., µN , σ
2}. Table 3.3 shows a possible,

simulated outcome of this model for given parameters µi and true σ2 = 1. Now as we

take the given location parameters as unknown, we can derive the profile likelihood of σ2

and by knowing the location parameters µi we can also calculate the true likelihood of σ2

by simply feeding the true µi values into the Likelihood function of all parameters, which

is

L(θ|xi) =
N∏
i=1

1

2πσ2
exp

(
− 1

2σ2

2∑
j=1

(xij − µi)2

)
,

so that there is only the unknown σ2 left. Hence, we can compare the profile likelihood

and the true likelihood for σ2. To better see the differences between those two, they are

both scaled in a way that their maximum values are 1. The result can be seen in figure 6.

The underlying source code for the maximization of the likelihood function concerning the

nuisance parameters in order to derive the profile likelihood can be found in the appendix.

In figure 6 we can see that the true likelihood has its maximum at the true σ2. In fact,

this does not necessarily need to be the case as the data can also differ more strongly and

give maximum support to an other value than σ2 = 1. Still we can see, that the profile

likelihood and the true likelihood for σ2 are differing from each other.

However, to see that the profile likelihood is biased, we have to analytically derive the

profile likelihood. In this example, profile likelihood and estimated likelihood are the

same, i. e. the single maximum likelihood estimates µ̂i = x̄ = xi1+xi2
2

for the nuisance

parameters µi will be the same as the global maximization of the overall likelihood function

concerning the nuisance parameters. This example is chosen in a way that it reflects an

analysis of variance (ANOVA) model. In this model the part within the exponent of the

likelihood function in which the single estimates appear can be described as the residual

sum of squares
∑N

i=1

∑2
j=1(xij − µ̂i)2 =

∑N
i=1

∑2
j=1(xij − x̄i)2 = RSS. Hence, when we

want to derive the maximum likelihood estimate of σ2 based on its profile likelihood

Lp(σ
2) = max

µ1,...,µN
L(θ|xi) =

1

2πσ2
exp

(
− 1

2σ2
RSS

)
,

which involves deriving its log likelihood function

lp(σ
2) = −N log (2πσ2)− 1

2σ2
)RSS,

18
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i µi yi1 yi2 i µi yi1 yi2
1 -3.97 -4.50 -3.65 21 -4.50 -2.65 -4.55
2 0.99 0.98 2.58 22 10.70 10.44 8.53
3 5.01 6.34 4.89 23 -5.83 -5.72 -4.52
4 6.44 6.53 6.42 24 -0.24 -1.13 -1.28
5 4.53 3.70 5.23 25 2.08 1.54 1.75
6 2.47 2.27 2.31 26 8.60 10.27 7.55
7 3.00 3.22 3.30 27 -3.92 -3.84 -3.22
8 -7.90 -6.53 -9.29 28 -6.52 -5.01 -6.52
9 5.00 3.36 6.43 29 -2.26 -0.83 -3.37

10 10.94 11.04 11.25 30 -8.87 -8.30 -7.53
11 -6.05 -5.16 -5.15 31 -0.25 -0.18 0.94
12 -2.94 -1.43 -2.43 32 -5.19 -7.30 -4.52
13 5.28 4.94 6.65 33 3.11 2.92 2.92
14 -1.58 -0.76 -0.16 34 0.64 1.42 1.20
15 -0.27 1.92 -1.17 35 -8.70 -8.72 -8.96
16 1.65 -0.04 1.18 36 -2.87 -3.03 -4.96
17 3.32 2.96 4.06 37 4.56 5.01 3.86
18 4.39 4.56 6.04 38 6.17 6.95 5.91
19 1.01 1.05 -0.02 39 3.31 3.33 3.71
20 11.37 10.74 11.95 40 -4.31 -2.34 -3.35

Table 1: Observations and True Location Parameters

calculating its derivative for σ2 to receive the score function and solving the score equation

Sp(σ
2) = −N

σ2
+

1

2(σ2)2
RSS

!
= 0,

we will receive

σ̂2
ML =

1

2N
RSS.

as maximum likelihood estimate.

In the ANOVA model, we know the distribution of the ratio of the residual sum of squares

and the true variance parameter
RSS

σ2
∼ χ2

N

can be described by a χ2 distribution [16] with N degrees of freedom. Hence, we can

calculate the expectation and variance of the maximum likelihood estimate σ̂2
ML:

E(σ̂2
ML) = E

(
RSS

2N

)
=

σ2

2N
E
(
RSS

σ2

)
=

σ2

2N
·N =

σ2

2

V(σ̂2
ML) = V

(
RSS

2N

)
=

σ4

4N2
V
(
RSS

σ2

)
=

σ4

4N2
· 2N =

σ4

2N

19



3 MULTIVARIATE LIKELIHOOD, NUISANCE PARAMETERS

The expectation of the maximum likelihood estimate is not equal to σ2, hence biased,

and the bias does also not diminish asymptotically. Moreover, considering both, bias and

variance, we can see the maximum likelihood estimate is also not MSE consistent.

σ̂2
ML

p→ σ2

2

At this stage, it should be pointed out that bias is a general problem of the likelihood

approach and not only limited to this example. However, in this example, the bias is se-

vere. Moreover, one should bear in mind that Neyman and Scott, although describing the

problem as introduced here, did not use the term “profile likelihood” in their publication

as this term did not exist in 1948 [*]. In a paragraph on the history of profile likelihood

Sprott [18] argues that almost 20 years later, in 1964 Box and Cox used the profile like-

lihood under the name “maximized likelihood” because the term “profile likelihood” was

also not known then.

3.4 Marginal and Conditional Likelihood

Two other methods for deriving likelihoods for parameters of interest in the context of

multivariate likelihoods are the marginal likelihood concept as well as the conditional

likelihood approach. Both are based on the idea of transforming the observation vector x

into two vectors x→ (a, b).

Marginal Likelihood

For the marginal likelihood this transformation is that the density function for the data

in the model based on all parameters can be divided in a way that the marginal density

of the transformed vector a is only dependent on the parameter of interest λi.

L(λi, λ−i|a, b) = f(a, b|λi, λ−i) = f(a|λi)f(b|a, λi, λ−i) = Lm(λi)Lε(λi, λ−i)

The marginal likelihood is then defined by this marginal density.

Conditional Likelihood

The conditional likelihood approach is similar. The idea here is that not the marginal

but the conditional density of the data vector a|b is only dependant on the parameter of
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Figure 6: Marginal Likelihood

interest λi.

L(λi, λ−i|a, b) = f(a|b, λi)f(b|λi, λ−i) = Lc(λi)Lε(λi, λ−i)

The conditional likelihood is then defined by this conditional density. Conditional Likeli-

hood generally exists when all parameters, λi as well as the nuisance parameters are the

natural parameters of an exponential family model [16].

Nevertheless, marginal and conditional likelihoods are not always availably or are difficult

to be obtained.

Marginal Likelihood - Example by Neyman and Scott

According to Pawitan, the marginal likelihood can be a useful approach for the previous

example concerning the biased profile likelihood. When we transform the data x→ (a, b)

in the following manner

ai =
xi1 − xi2√

2
, bi =

xi1 + xi2√
2

,
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we will receive an unbiased maximum likelihood estimate from the marginal likelihood

Lm(σ2) =
N∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
a2
i

)
.

The marginal likelihood function can be seen in figure 6. When it is mentioned that the

marginal likelihood is unbiased, however this does not mean that the maximum of the

marginal likelihood is the same as the maximum of the true likelihood function.

The fact that the maximum likelihood estimate of the marginal likelihood function is

unbiased can again be seen when we use the information that within an ANOVA model,

the ratio of the residual sum of squares and the true variance is χ2 distributed with N

degrees of freedom. Because then

E(σ̂2
ML) = E(

1

N

N∑
i=1

a2
i ) = E(

RSS

N
) = σ2

the expectation of the maximum likelihood estimate is the true parameter σ2 and hence

it is shown that the maximum likelihood estimate is unbiased.

4 Comparison to Other Uncertainty Concepts

After the foundations of the likelihood concepts have been introduced and methods of

inference have been discussed in the single and multi-parameter context, in the following

section, the historical use and development is depicted. Furthermore the likelihood con-

cept is compared to both, the Bayesian and frequentist approaches. Lastly it is shown

how the likelihood concept is discussed in scientific literature.

4.1 Historical Development

The likelihood concept, as we use it today goes back to Ronald Aylmer Fisher (1890-

1962). He introduced the term “likelihood” in 1921 and published the maximum likelihood

method in 1922. However, the idea of the maximum likelihood concept goes further back

in history. It was already used in the 18th century and was independently developed
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by Johann Heinrich Lambert (1728-1777) and Daniel Bernoulli (1700-1782) [11]. Laplace

(1749-1827) is also known for developing the concept of “inverse probability”, which is

referring to the likelihood function. As already mentioned at the beginning, “inverse

probability” means, an unknown parameter is looked at given an observed sample λ|x
which can be viewed as “inverse” to the probability of an observed sample given an

unobserved parameter x|λ. Carl Friedrich Gauß (1777-1855) used the approaches by

Lambert, Bernoulli and Laplace to perform parameter estimates for his method of least

squares.

4.2 Bayesian Approach

Now, it shall be discussed how the likelihood concept can be compared to the Bayesian

approach. The Bayesian view on probability is that it is a subjective degree of belief on

a parameter or a future observation. In a Bayesian model there is a prior assumption on

the distribution of the parameter.

f(λ|x) ∝ f(x|λ)f(λ)

In Bayesian statistics, inference is carried out from the posterior distribution. The pos-

terior distribution equals the likelihood function when we assume a constant prior distri-

bution for the unknown parameter, i. e. p(λ) ≡ 1 and calibrate the function in order to

integrate to 1. In this case, we assume that the prior distribution does not contain infor-

mation about the parameter λ. If there is prior knowledge about the parameter available,

the likelihood concept can not deal with it.

Here, it should be mentioned that although Pawitan describes that assuming a uniform

distribution is equivalent to having no prior knowledge is not true, because the assumption

of a constant prior is also an implication of knowledge concerning the plain structure of

the prior distribution [*].

4.3 Frequentist Approach

Frequentists define probability differently. They see it as the limit of a random sequence

of relative frequencies. For true frequentists likelihood inference can be pointless in some

cases when it is referring to a parameter. When we consider a 95% confidence interval for
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a parameter 3.3 ≤ λ ≤ 5.2, frequentists could not make a conclusion on the parameter

based on this interval, because the 95% confidence level is referring to the confidence

interval procedure and not to the parameter from their perspective [16].

Repeated Sampling Principle

One fundamental property of the frequentist approach is expressed in the “repeated sam-

pling principle”. This principle states that inferential methods should be based on their

behaviour in hypothetical repetitions under the same conditions [16]. This, however can

be in conflict with the likelihood concept, as the following example shows.

Example by Fraser et al.

Fraser et al. [8] describe a situation in which the repeated sampling principle is violated.

Assume we conduct an experiment with a given density function f(x|λ), and in which the

sample space is a triple dependent on an unobserved parameter λ.

f(x|λ) =



1

3
, x = 1, 2, 3 λ = 1

1

3
, x =

λ

2
, 2λ, 2λ+ 1, λ gerade

1

3
, x =

λ− 1

2
, 2λ, 2λ− 1, λ ungerade

λ ∈ N and x ∈ N are scalar. The density function is constant. To get a better idea of

this density function, consider table 2.

λ
1 2 3 4 5 6 7 8

x

1 1 1 1 0 0 0 0 0
2 1 0 0 1 1 0 0 0
3 1 0 0 0 0 1 1 0
4 0 1 0 0 0 0 0 1
5 0 1 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0
7 0 0 1 0 0 0 0 0
8 0 0 0 1 0 0 0 0

Table 2: Incidence Matrix (see Fraser et al. [8])
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As we know the probability density function, we can also define the corresponding likeli-

hood function, which is also constant.

L(λ|x) =



1

3
, λ = 1, 2, 3 x = 1

1

3
, λ =

x

2
, 2x, 2x+ 1, x gerade

1

3
, λ =

x− 1

2
, 2x, 2x− 1, x ungerade

When the likelihood function is always constant, this means that every possible value for

λ is equally suitable as an estimate for λ, because the likelihood takes its maximum at

each value.

However, we can also use a different approach for deriving an estimate for the parameter

λ. Due to the way the underlying density function is defined, there are always three

different possibilities for a point estimate for λ: λ̂1 = λ(1), λ̂2 = λ(2), λ̂3 = λ(3), i. e. we

can depict these as the smallest, the middle and the largest value, λ can take for given

observations x. With this idea in mind we can now calculate the probabilities that these

estimators are correctly determining the unknown parameter:

P(λ̂1 = λ) =

1, λ = 1

2
3
, λ > 1

,P(λ̂2 = λ) =

1
3
, λ ∈ 2N

0, λ ∈ 2N− 1
,P(λ̂3 = λ) =

1
3
, λ ∈ 2N + 1

0, λ ∈ 2N

The calculation of the probabilities can be better understood from the incidence matrix

(table 2). From these probabilities there is clear evidence, that λ̂1 is a better estimate than

λ̂2 and λ̂3, because its probability of correctly estimating the true parameter is always

larger than for the other two estimators:

P(λ̂1 = λ) ≥ 2

3
>

1

3
≥ P(λ̂2 = λ) = P(λ̂3 = λ).

This example shows that the likelihood does not account for long term repetitions under

the same conditions and hence the repeated sampling principle is violated. Pawitan argues

that the probability of correctly estimating the parameter of interest is not a property of

information which is stored in the data. Therefore, this information can not be considered

in the likelihood function. A similar example is also discussed by Goldstein and Howard
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Figure 7: see Efron [7]

[10] [16].

4.4 Discussion About Likelihood Concept

In this last section, I would like to describe how the likelihood concept is viewed in the

scientific literature. Pawitan mentions the likelihood approach as a Bayesian-frequentist

compromise [16]. Ronald Aylmer Fisher himself explains his point of view when likeli-

hood inference should be used as when there is no possibility of making exact probability

statements. He also states, that if sample size is large enough, inference based on asymp-

totic distributions can also be conducted [9]. Within this light, Pawitan describes Fishers

attitude towards probability that he is neither in favor of the strict assumption of a prior

distribution in the Bayesian sense, nor a supporter of the strict frequentist definition of

probability as a limit of a random sequence of relative frequencies. Following Fishers idea,

as described above, his attitude is also not towards likelihood being the sole carrier of

uncertainty in statistical inference [16]. Nevertheless, there are also sources available that

favour this idea (see e.g. Royall [17]). As a final idea I would like to quote an illustra-

tion from Efron [7]. He tries to visualize the tendency of common statistical inference

procedures towards a Bayesian or frequentist approach or an approach based on Fisher’s

ideas. His conclusion can be seen in figure 7 and is an interesting idea, which should be
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considered as open for discussion.

In this example, Efron does not only refer to the likelihood approach itself, as he uses

the term “Fisher” to describe this approach [*]. By the word “Fisher” he also aims to

consider Fisher’s idea of “fiducial inference”. The fiducial argument was supposed to

be an alternative to the Bayesian argument, which was neglected by Fisher because of

the mostly arbitrary and non-objective choice of a prior distribution. Unlike in Bayesian

inference, in fiducial inference no prior distribution is assumed. However, the fiducial

inference approach lacks of an exact definition and has some serious drawbacks as there

are problems with multivariate parameter estimation for instance [3][*].

5 Summary

The likelihood concept offers a variety of inferential methods. It has been shown how its

basic principals of statistical inference work. Furthermore a broad repertoire of methods

has been discussed with a special emphasis on multivariate likelihoods and the dealing

with nuisance parameters. A variety of examples proved, that the likelihood concept can

not be applied in any situation and that there are shortcomings one should bear in mind

when using such inferential methods. Lastly it was shown how the likelihood concept

can be compared to Bayesian and frequentist ideas and that there are parallels to these

approaches in both cases. The biggest advantage explaining the various applications of

likelihood might be its simplicity as Efron states that Fisher’s work has “unique quality

of [...] mathematical synthesis combined with the utmost practicality” [7].

6 Comparison with other Concepts of Uncertainty

This last section is referring to the seminar “Probability and other Concepts of Uncer-

tainty” again. It aims to compare the likelihood approach to other concepts of uncertainty

which have been presented in the seminar. The first talk was about “subjective proba-

bility” and this is closely related to Bayesian inference. As described in this work it is

possible to show relations between the Bayesian and the likelihood inference concept and

hence to subjective probability interpretations. Another talk focussed on “fuzzy sets”. In

27



7 REFERENCES

this talk it was pointed out that likelihood functions can be identified as a special case of

fuzzy sets and hence a relation to the likelihood concept can be drawn. This is different

with the topic “interval probabilities”. The likelihood concept as introduced here cannot

deal with such generalization of probability. Moreover, this points out a major difference

between likelihood and more sophisticated uncertainty concepts: the likelihood concept

is highly applicable, but some other approaches are too complex or deal with data, which

only rarely exists (e.g. fuzzy data), so that these concepts are of minor practical relevance

[*].
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8 Appendix

R-Code for Bias of Profile Likelihood Example

set.seed(41)

N<-40

mu<-rnorm(N,0,5)

sigma<-1

# Generation of dataset

y<-matrix(0,N,2)

for(i in 1:N){

y[i,1]<-rnorm(1,mu[i],sigma)

y[i,2]<-rnorm(1,mu[i],sigma)

}

### True Likelihood for sigma^2

likelihood_true<-function(sigma_squared, mu){

result<-NULL

for(j in 1:length(sigma_squared)){

result_step<-1

for(i in 1:N){

result_step<-result_step*1/(2*pi*sigma_squared[j])*

exp(-1/(2*sigma_squared[j])*((y[i,1]-mu[i])^2+(y[i,2]-mu[i])^2))

}

result<-c(result, result_step)

}

return(result)
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}

vec<-seq(0.01,2.5,.01)

likelihood_true_vec<-likelihood_true(vec,mu)

likelihood_true_max<-max(likelihood_true(vec,mu))

likelihood_true_norm<-likelihood_true_vec/likelihood_true_max

### Profile Likelihood for sigma^2

likelihood_profile <- function(sigma_squared){

result<-NULL

for(i in 1:length(sigma_squared)){

func_optim <- function(nuisance, method="Nelder-Mead"){

-likelihood_true(sigma_squared[i], mu=nuisance)

}

nuisance <- optim(mu, fn = func_optim)

mu <- nuisance$par

result<-c(result,likelihood_true(sigma_squared[i], mu))

}

return(result)

}

likelihood_profile_vec<-likelihood_profile(vec)

likelihood_profile_max<-max(likelihood_profile_vec)

likelihood_profile_norm<-likelihood_profile_vec/likelihood_profile_max

plot(vec,likelihood_true_norm,t="l",col="steelblue",lwd=3,

xlab=expression(paste(sigma,"^2")),ylab="Standardized Likelihood",

main=expression(paste("Likelihood for ",sigma,"^2")))

lines(vec,likelihood_profile_norm, lwd=3, col="darkolivegreen")

abline(v=1,lty=2)

R-Code for Marginal Likelihood Example

# Transformation of Data

a<-(y[,1]-y[,2])/sqrt(2)

b<-(y[,1]+y[,2])/sqrt(2)

# Marginal Likelihood Function

likelihood_marginal<-function(sigma_squared){

result<-NULL

for(j in 1:length(sigma_squared)){

prod<-1

for(i in 1:length(a)){

prod<-prod*dnorm(a[i],0,sqrt(sigma_squared[j]))

}

result<-c(result,prod)

}

return(result)

}

likelihood_marginal_vec<-likelihood_marginal(vec)

likelihood_marginal_max<-max(likelihood_marginal_vec)

likelihood_marginal_norm<-likelihood_marginal_vec/likelihood_marginal_max

lines(vec,likelihood_marginal_norm,lwd=3)

R-Code for Cauchy-Model

x<-c(-15,15)

lh<-function(lambda,x){

result<-NULL

for(j in 1:length(lambda)){
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result_new<-0

for(i in 1:length(x)){

result_new<-result_new-(log(pi)+log(1+(x[i]-lambda[j])^2))

}

result<-c(result,result_new)

}

return(result)

}

lambda<-seq(4*x[1],4*x[2],.2)

plot(lambda,lh(lambda,x),t="l",lwd=3,main="Likelihood Cauchy-Modell",

xlab=expression(lambda),ylab=expression(paste("L(",lambda,"|x)")),

xlim=c(3*x[1],3*x[2]))

## Cauchy distribution for -50, 50, Kernel Density Estimator

dcauchy<-function(x,theta){

result<-1/(pi*(1+(x-theta)^2))

return(result)

}

vec<-seq(4*x[1],4*x[2],.1)

plot(density(x),ylim=c(0,.35),xlim=c(3*x[1],4*x[2]),lwd=3,

col="indianred4",main="Cauchy-Modell",xlab="x",

ylab=expression(paste("f(x|",lambda,")")))

lines(vec,dcauchy(vec,x[1]),lwd=3,t="l",col="steelblue")

lines(vec,dcauchy(vec,x[2]),lwd=3,col="darkolivegreen")

lines(vec,(dcauchy(vec,0)),lwd=3)

abline(v=x[1],lty=2)

abline(v=x[2],lty=2)

R-Code for Mixture Model

par(mar=c(5,5,5,5))

x1<-rnorm(200,20,1)

x2<-rnorm(1,30,1)

hist(c(x1,x2),breaks=100, freq=F, xlim=c(15,35),main="Mischverteilung",

xlab="x", ylab=expression(paste("f(x|",mu,",",sigma^2,")")))

vec<-seq(0,60,.01)

lines(vec,dnorm(vec,20,1))

lines(vec,dnorm(vec,30,1))

lh<-function(mu,sigma_squared){

result<-dnorm(x2,mu,sqrt(sigma_squared))

return(result)

}

vec1<-seq(0,60,1)

vec2<-vec1

z<-outer(vec1,vec2,lh)

contour(vec1,vec2,z,60,main="Likelihood",xlab=expression(mu),

ylab=expression(sigma^2),col="steelblue")

abline(v=x2,lty=2)

persp(vec1,vec2,z,col="steelblue",theta=120,xlab="mu",ylab="sigma^2",

zlab="L(.)",main="Likelihood")
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