
Symmetric Probability Theory
Kurt Weichselberger, Munich

I. The Project p. 2

II. The Theory of Interval Probability p. 4

III. The Logical Concept of Probability p. 6

IV. Inference p. 11

Kurt.Weichselberger@stat.uni-muenchen.de

page 1



I. The Project.

Symmetric Probability Theory attaches probability to arguments (and not to events!)
understood as ordered pairs of propositions.
Argument A‖B: A is the conclusion, B is the premise.

Symmetric Probability Theory employs probability statements in statistical inference. A
duality of two probability-fields with inverse roles of premises and conclusions produces
evaluations of probability P (B‖A) of the same quality as P (A‖B).

Symmetric Probability Theory rests on the Logical Concept of Probability.

The Logical Concept of Probability is based on the Theory of Interval Probability.

Therefore the Theory of Interval Probability is vital for Symmetric Probability Theory.
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Aims of the theory : A comprehensive methodology of probabilistic modeling and
statistical reasoning, which makes possible hierarchical modeling with information gained
from empirical data.
To achieve the goals of Bayesian approach — but without the pre-requisite of an
assumed prior probability.
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II. The Theory of Interval Probability

Axioms of Interval Probability

T I - T III = axioms of Kolmogorov

A function obeying Kolmogorov’s axioms is named

“K-function”: p(.) ∈ K(ΩA; A)

T IV: ∀A ∈ A, P (A) = [L(A); U(A)] ⊆ [0; 1]

T V:
M = {p(.) ∈ K(ΩA; A)|L(A) ≤ p(A) ≤ U(A), ∀A ∈ A} 6= ∅

R-probability obeys T IV and T V.

M is named “the structure” of this R-probability.
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T VI:
inf

p(.)∈M
p(A) = L(A); sup

p(.)∈M
p(A) = U(A), ∀A ∈ A

F-probability obeys T IV, T V and T VI.

In case of F-probability: U(A) = 1− L(¬A), ∀A ∈ A.

F-probability-field: F = (Ω; A; L(.))

Union of F-fields:

Let Fi = (ΩA; A; Li(.)) i ∈ I 6= ∅

The union of Fi is defined as⋃
i∈I

Fi = F = (ΩA; A; L(.)) with L(A) = infi∈I Li(A)

U(A) = supi∈I Ui(A)

∀A ∈ A

The class of F-fields is closed under the operation “union”.
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III. The Logical Concept of Probability

F-probability is assigned to certain pairs of propositions:

Propositions are elements of epistemic variables. An epistemic variable is the set of
sensible answers to a certain question concerning the reality. (Compare with random
variables in Classical Theory!!)

An epistemic variable B is irrelevant for the epistemic variable A, if none of its
elements contains any information concerning an element of A.

If epistemic variables B1, ..., Br are irrelevant for A, so is the combined epistemic
variable (B1, ..., Br).

Generally relevance of an epistemic variable B for an epistemic variable A is a
question of ideology — in our case it is the question of the statistical model in use.
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If the proposition B is an element of B and the proposition A is an element of A
and if B is relevant for A, then B is relevant for A and (A‖B) is an argument:

A is the conclusion, B is the premise.

Independence of Arguments:

Two arguments (A1‖B1) and (A2‖B2) are independent of each other, iff

A1 ∈ A1, B1 ∈ B1, A2 ∈ A2, B2 ∈ B2 and

the epistemic variable B2 is irrelevant for the epistemic variable A1 and

the epistemic variable B1 is irrelevant for the epistemic variable A2.

Independence of more than two arguments (Ai‖Bi), i ∈ {1, 2, ..., r}:

α) pairwise independence: (Ai‖Bi) and (Aj‖Bj), i 6= j, are independent of each
other, iff j ∈ {1, ..., r};

page 7



β) total independence: the combined epistemic variable
∧

j∈I2
Bj is irrelevant for the

combined epistemic variable
∧

i∈I1
Ai, if I1 ∩ I2 = ∅, I1, I2 ⊂ {1, ..., r}:

the arguments
(∧

i∈I1
Ai

∥∥∥∧i∈I1
Bi

)
and

(∧
j∈I2

Aj

∥∥∥∧j∈I2
Bj

)
are always

independent of each other.

It can be shown that pairwise independence produces total independence.

Under these conditions F-probability can be applied to evaluate arguments.

W-fields:

W = (ΩA; A; ΩB; B; L(.||.))

(ΩA; A) is a space of conclusions

(ΩB; B) is a space of premises, B+ = B \ {∅}.
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Axioms

L I: To each B ∈ B+ the F-probability-field F(B) = (ΩA; A; L(.‖B)) is attributed.

M(B) is the structure of F(B).

L II: Let B0 ∈ B+, Bi ∈ B+, i ∈ I 6= ∅ with B0 =
⋃

i∈I Bi,

then
F(B0) =

⋃
i∈I

F(Bi)

L III: Let A1, A2 ∈ A, B1, B2 ∈ B,

(A1‖B1) and (A2‖B2) independent from each other.

Then
L(A1 ∩A2‖B1 ∩B2) = L(A1‖B1) · L(A2‖B2)
U(A1 ∩A2‖B1 ∩B2) = U(A1‖B1) · U(A2‖B2).

Multiplicativity is generated by independence — and not vice versa.
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For the interpretation:

It can be proven: Let the arguments (Ai‖Bi), i ∈ {1, 2, ...} be totally independent,
P (Ai‖Bi) = [L; U ], ∀ i = 1, 2, ... (the same probability component for each of
the arguments).

Let C = (C1, C2, ...) with Ci ∈ {Ai, ¬Ai}, i = 1, 2, ... be a possible sequence
of conclusions.

t(r) is the number of Ai among {C1, ..., Cr}

r − t(r) is the number of ¬Ai among {C1, ..., Cr}.

A[r](δ) :=
{

L− δ ≤ t(r)
r

≤ U + δ

}
; δ > 0; B[r] =

r⋂
i=1

Bi.

A[r](δ) is the union of all conclusions Ci in accordance with the condition for t(r);

B[r] is the combined premise: L
(
A[r](δ)

∥∥B[r]
)

characterizes what can be derived
from the premise about t(r).
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Then: lim
r→∞

L(A[r](δ)‖B[r]) = 1, ∀ δ > 0.

Frequency interpretation of the Logical Concept:
Every P (A‖B) = [L; U ] may be interpreted, as if (A‖B) was one out of
an infinite series of totally independent arguments (Ai‖Bi) where the proportion of
arguments for which A came true, is between L and U .

W-field

The set of F-fields generated by singletons out of ΩB according to Axiom L I, may be
viewed as a family of F-fields with parameters y ∈ ΩB.

Each of the remaining F-fields generated by compound elements B of B, is the union
of F-fields generated by singletons.
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Classical W-field

Any W-field W = (ΩA; A; ΩB; B; L(.||.)), for which
M(y) = {py(.) ∈ K(ΩA; A)},∀ y ∈ ΩB, is named classical W-field. Each
elementary premise in such W-field produces a classical probability-field. Due to this
aspect any classical W-field can be employed as a model of a family of classical
probability-distributions.

W-support

Let W = (ΩA; A; ΩB; B; L(.||.)) be a W-field. Any set Y of arguments
(Ai‖Bi), Ai ∈ A, Bi ∈ B+, large enough that the information contained in
{P (Ai‖Bi), ∀ (Ai‖Bi) ∈ Y } , is sufficient for reconstruction of W , is named
W-support of W .
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IV. Inference

Perfect inference for an ordered family of classical distributions is created through the
concept of “dual W-field”: If W1 is a model of the family F1, the dual W-field W2 is a
model of the family F2 which is perfect inference to F1.

Let F1 be an ordered family of classical distributions with one-dimensional variable and
one-dimensional parameter.

1-Concordance

Let W = (ΩA; A; ΩB; B; L(.||.)) be a classical W-field. Let ∅ 6= ZA $ A be a
monotone system of conclusions in W and ZA = {¬A|A ∈ ZA}.
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Let ∅ 6= ZB $ B+ be a monotone system of premises in W and
ZB = {¬B|B ∈ ZB}, so that for each pair (A, B) ∈ ZA × ZB there exists
αU ∈ ]0; 1[ with

B = {y ∈ ΩB| p(A‖y) ≥ αU} and inf
y∈B

p(A‖y) = αU .

Because of ¬B = {y ∈ ΩB| p(A‖y) < αU},

there exists αL ≤ αU with supy∈¬B p(A‖y) = αL.

Then (ZA‖ZB) =
{
(A‖B)| A ∈ ZA ∪ ZA, B ∈ ZB ∪ ZB

}
is called

1-Concordance in W .
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Symmetrically one-dimensional W-field

Let W be a classical W-field. If there exists a 1-Concordance (ZA‖ZB) in W , which
is a W-support of W , then W is named symmetrically one-dimensional W-field.

Any field of this type contains the model of a family of classical probability-
distributions with

one-dimensional variable, one-dimensional parameter
and a distribution function F (x; y) monotonically decreasing in the parameter y:
ordered family of one-dimensional distributions.

Such family is named complete family of type 1, if the set of parameter-values is
distinguished only by the probability law engaged;
it is named truncated family of type 1, if the set of parameter-values is distinguished
by additional information.
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Duality

Let W1 = (ΩA; A; ΩB; B; L1(.||.)) be a symmetrically one-dimensional W-field and
W2 = (ΩB; B; ΩA; A; L2(.||.)) be a W-field.

If there exists a 1-concordance (ZA‖ZB) in W1 which is a W-support of W1

and (ZB‖ZA) := {(B‖A)|B ∈ ZB, A ∈ ZA} is a W-support of W2,

where
B = {y ∈ ΩB| p1(A‖y) ≥ α} and P1(A‖B) = [α; 1]

produces

A = {x ∈ ΩA| p2(B‖x) ≥ 1− α} and P2(B‖A) = [1− α; 1],

then W2 is the dual W-field to W1.
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In the dual W-field W2 the roles of (ΩA; A) and of (ΩB; B) are exchanged:
W2 contains probability of inference.

It can be shown:

Let A ∈ ZA, B ∈ ZB and P1(A‖B) = [α; 1].

Then according to Classical Theory, [1 − α; 1] is the set of possible confidence
coefficients for the confidence interval B, if any one of the outcomes A′ ∈ ZA,
A′ ⊆ A is employed. Therefore, as far as the elements of the 1-concordance are
concerned, dual probability for the argument with conclusion B and premise A
in Classical Theory represents the probability that B contains the true value of y
generating the information A′ ⊆ A, A′ ∈ ZA.

Axiom S I: Let F1 be a complete family of type 1, represented by the
symmetrically one-dimensional W-field W1 = (ΩA; A; ΩB; B; L1(.||.)).
If the W-field W2 = (ΩB; B; ΩA; A; L2(.||.)) is dual to W1, the family of
F-probability F2, generated in W2 by the elements of ΩA, yields the perfect
inference to F1. �

page 17



Since the dual W-field W2 can be derived from W1 uniquely, perfect inference F2

of a family F1 can be described by means of the respective distribution functions
F1(x; y) and F2(y; x).

Let

F1(x+; y−) = lim
h→0+

F1(x + h; y − h);F1(x−; y+) = lim
h→0+

F1(x− h; y + h)

Then:

F2(y; x) = [1− F1(x+; y−); 1− F1(x−; y+)] = [L2(y; x); U2(y; x)]

This formula in the general case describes a special type of partially determined
F-probability, standardized cumulative F-probability : Only the interval-limits

L2(y; x) = L2 (]yL; y] ‖x)
U2(y; x) = U2 (]yL; y] ‖x)

}
∀ y ∈ ΩB, x ∈ ΩA

are given.
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The evaluation of the information available is determined by two results:

1)
L2([y1; y2]‖x) = max(0; L2(y2; x)− U2(y1; x))
U2([y1; y2]‖x) = U2(y2; x)− L2(y1; x))

2) Let A be a union of pairwise disjoint intervals in ΩB:

A =
r⋃

i=1

A(i), A(i) = [li; ui],

yL < li < ui < li+1 < yU .

Then:

L2(A‖x) =
∑r

i=1 L2

(
A(i)

∥∥x
)

U2(A‖x) =
∑r

i=1 U2

(
A(i)

∥∥x
)
−
∑r−1

i=1 max(0; U2(ui; x)− L2(li+1; x)).

(See: Weichselberger, 2001, pp. 416-424)
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Continuous Distributions-functions.

If F1(x; y) is continuous as well in x as in y, then:

F2(y; x) = 1− F1(x; y).

Perfect inference to the complete family of type 1 F1, is given by F2, a complete
family of type 1. As long as the premise is a singleton x, evaluation is achieved by
classical probability. Compare approaches by R.A. Fisher, D.A.S. Fraser, A. Dempster
and Podobnik and Živko.

For a compound premise — created by an imprecise observation — perfect inference
is described by cumulative F-probability.
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Examples

A. Continuous Distribution-functions
A1 Exact observation: elementary premise for W2

If a density exists:

f1(x‖{y}) =
∂F1(x; y)

∂x
; f2(y‖{x}) =

−∂F1(x; y)
∂y

(Fisher’s definition of Fiducial Probability)
If x− y is a pivotal quantity, this leads to

f1(x‖{y}) = f2(y‖{x}).

(Normal distribution, Cauchy distribution, rectangular distribution)
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A2 Interval observation [x1, x2]
Perfect inference to F1 is described by a family of standardized cumulative
F-probability:

P2 (]yL; y]‖ [x1; x2]) = [1− F1(x2; y); 1− F1(x1; y)]

Normal distribution with variance σ2:

P2 (]−∞; y]‖ [x1; x2]) =

=

 1
σ
√

2π

∫ ∞

x2

e
−

(t− y)2

2σ2 dt;
1

σ
√

2π

∫ ∞

x1

e
−

(t− y)2

2σ2 dt
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P2 (]y1; y2]‖ [x1; x2]) =max

0;
1

σ
√

2π

∫ ∞

x2

e
−

(t− y2)2

2σ2 dt− 1
σ
√

2π

∫ ∞

x1

e
−

(t− y1)2

2σ2 dt

;

1
σ
√

2π

∫ ∞

x1

e
−

(t− y2)2

2σ2 dt− 1
σ
√

2π

∫ ∞

x2

e
−

(t− y1)2

2σ2 dt
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B. Discontinuous Distribution-functions
Perfect inference is described by a family of standardized cumulative F-probability
Binomial distribution:

F1(i, y) =
i∑

r=1

(
n

r

)
yr(1− y)n−r

Exact observation {i}:

P2 ([0; y]‖{i}) =

[
1−

i∑
r=1

(
n

r

)
yr(1− y)n−r; 1−

i−1∑
r=1

(
n

r

)
yr(1− y)n−r

]
=

=

[
n∑

r=i+1

(
n

r

)
yr(1− y)n−r;

n∑
r=i

(
n

r

)
yr(1− y)n−r

]

page 24



P2 ([y1; y2]‖{i}) =

=

[
max

(
0;

n∑
r=i+1

(
n

r

)
yr
2(1− y2)n−r −

n∑
r=i

(
n

r

)
yr
1(1− y1)n−r

)
;

n∑
r=i

(
n

r

)
yr
2(1− y2)n−r −

n∑
r=i+1

(
n

r

)
yr
1(1− y1)n−r

]

page 25



Interval observation [i1; i2]

P2 ([0; y]‖[i1; i2]) =

=

 n∑
r=i2+1

(
n

r

)
yr(1− y)n−r;

n∑
r=i1

(
n

r

)
yr(1− y)n−r


P2 ([y1; y2]‖[i1; i2]) =

=

max

0;
n∑

r=i2+1

(
n

r

)
yr
2(1− y2)n−r −

n∑
r=i2

(
n

r

)
yr
1(1− y1)n−r

 ;

n∑
r=i1

(
n

r

)
yr
2(1− y2)n−r −

n∑
r=i1+1

(
n

r

)
yr
1(1− y1)n−r
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Hypergeometric distribution:
y = number of red balls in the universe of size N
n = sample size

F1(i, y) =
i∑

r=1

(
y
i

)(
N−y
n−i

)(
N
n

)
Exact observation {i}

P2 ([0; y] ‖{i}) =

[
1−

i∑
r=1

(
y−1

i

)(
N−y+1

n−i

)(
N
n

) ; 1−
i−1∑
r=1

(
y
i

)(
N−y
n−i

)(
N
n

) ]
=

=

min (y, n)∑
r=i+1

(
y−1

i

)(
N−y+1

n−i

)(
N
n

) ;
min (y, n)∑

r=i

(
y
i

)(
N−y
n−i

)(
N
n

)
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P2 ([y1; y2]‖{i}) =

=

max

0;
min(y2, n)∑

r=i+1

(
y2−1

i

)(
N−y2+1

n−i

)(
N
n

) −
min(y1, n)∑

r=i

(
y1
i

)(
N−y1
n−i

)(
N
n

)
 ;

min(y2, n)∑
r=i

(
y2
i

)(
N−y2
n−i

)(
N
n

) −
min(y1, n)∑

r=i+1

(
y1−1

i

)(
N−y1+1

n−i

)(
N
n

)


page 28



Interval observation [i1; i2]

P2 ([0; y]‖[i1; i2]) =

min(y, n)∑
r=i2+1

(
y−1

i

)(
N−y+1

n−i

)(
N
n

) ;
min(y, n)∑
r=i1+1

(
y−1

i

)(
N−y+1

n−i

)(
N
n

)


P2 ([y1; y2]‖[i1; i2]) =

=

max

0;
min(y2, n)∑
r=i2+1

(
y2−1

i

)(
N−y2+1

n−i

)(
N
n

) −
min(y1, n)∑
r=i1+1

(
y1
i

)(
N−y1+1

n−i

)(
N
n

)
 ;

min(y2, n)∑
r=i1+1

(
y2−1

i

)(
N−y2+1

n−i

)(
N
n

) −
min(y1, n)∑
r=i2+1

(
y1−1

i

)(
N−y1+1

n−i

)(
N
n

)
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Truncated Families

Axiom S II:

Let F1 represented by W1 = (ΩA; A; ΩB; B; L1(.||.)), be a complete family
of type 1 and F∗1 be the truncated family produced by the additional statement
“y ∈ Ω∗B”.

Let F2 represented by W2 = (ΩB; B; ΩA; A; L2(.||.)), be the perfect inference
to F1 and

Ω∗A = {x |U2 (Ω∗B| x) > 0} .

Perfect inference F∗2 to F∗1 is produced by the conditional probability according
to F2 of the argument (B‖x) relative to the argument (Ω∗B‖x) for all B ∈ B,
B ⊆ Ω∗B and for all x ∈ Ω∗A. �

In case that the distribution-function F1(x; y) is continuous in x and y, as long
as the premise A is given by an exact observation {x}, the conditional probability
defining F∗2 is classical too.
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It can be shown that in all other cases this axiom requires the employment of the
intuitive concept of conditional F-probability defined in the following way:

Let W = (ΩA; A; ΩB; B; L(.||.)) be a W-field.

Ω∗B ⊂ ΩB, B∗ = {B |B ⊆ Ω∗B} ∩ B.

Ω∗A = {x ∈ ΩA |U (Ω∗B‖x) > 0} , A∗ = A ∩ Ω∗A.

Then W∗ = (Ω∗B; B∗; Ω∗A; A∗; L∗(.||.)) is the conditional W-field with
respect to Ω∗B according to the intuitive concept of conditional F-probability, if
∀B ∈ B∗, ∀A ∈ A∗:

L∗(B‖A) := L(B|Ω∗B‖A) = inf
p(.‖A)∈M(Ω∗

B
‖A)

p(B‖A)
p(Ω∗B‖A)

with
M(A) = {p(.‖A) | p(B‖A) ≥ L(B‖A), ∀B ∈ B}

M(Ω∗B‖A) = {p(.‖A) ∈M(A)| p(Ω∗B‖A) > 0}
�
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Summarizing: The employment of Axiom S I and Axiom S II produces the perfect infe-
rence for all ordered families of classical distributions with one-dimensional conclusions
and one-dimensional parameters.

Symmetric Theory of Probability is work in progress. Perfect inference in the case of
multi-dimensional models is the next step to be taken.

Preliminary results show that principles can be generalized to higher dimensions and
results of familiar types can be expected.

The definite goal is a comprehensive approach
incorporating the methodology of inference into probability theory,
but avoiding explicitly subjectivistic elements like a-priori-distributions.
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