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Standard regression analysis

Standard regression models

@ Suppose that we have two variables Y and X with Y being a
dependent variable and X being predictor variable, related to
Y according to the relation Y = f(X,d) + €.

@ The simplest case: the linear model Y = bX + c+ €. Here b
and c are parameters (d = (b, ¢)) and € is the random errors
or the noise having zero mean and the unknown variance o2.

@ A linear regression model fits a linear function to a set of data
points. When the variable X takes n specific values xi, ..., xp,
the variables Y and € take specific values y; and €;,
respectively, i =1, ..., n, we get

vi=bxi+c+e€;, i=1,..,n
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Imprecise regression analysis (a general idea)

The first idea: maximum of the likelihood function over
the set of CDFs (continuous case)

Denote z; = y; — f(x;,d) and Z = (z, ..., zp).

@ Every r.v. Z; or € is governed by an unknown CDF belonging
to a set M;(d) depending on a vector of parameters d and
defined by lower and upper CDFs:

F(z|d)= inf F(z), F(z|d)= sup F(z2).
F(z)eM(d) F(z)eM(d)

@ The likelihood function L(Z | d, F) is maximized over all
distributions F from M;(d) and the resulting “modified”
likelihood function depends on d:

L(Z|d)= ng/\%d) L(Z|d,F).
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Imprecise regression analysis (a general idea)

Proposition

If random variables Z1, ..., Z, are independent and continuous,
then there holds

maxL H{F zj) — F(z)} 6(z).

Here 6(z) is Dirac function which has unit area concentrated in
the immediate vicinity of point z.
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Imprecise regression analysis (a general idea)

Defining the lower and upper CDFs

The second question:

How to define the functions F(z | d) and F(z | d) or the set
M(d)?

The first answer:

By using the imprecise Bayesian models!
The second answer:

By using the method of moments!

The third answer:

By using confidence intervals on the mean and variance!
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Imprecise Bayesian regression analysis

The Bayesian normal model

Let € ~ N(0,02). Denote A = 1/02. The conjugate prior
distribution for A is Gamma (A|a, b).
The predictive density function is

p(x|a, b) = \%I’[Ea) /_0; AT2 e (— [Xzzzb] A) da.

If we denote
x2+2b

2

b* = ,a =a+1/2,

then
1 I'(a*) »b°

p(X|a, b) = \/E F(a) (b*)a*-
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Imprecise Bayesian regression analysis

Imprecise Bayesian normal model (1)

Replace a and b by parameters s and <y such that a = (s +2)/2
and b = s7/2 (Quaeghebeur and de Cooman 2005).
The predictive density is

542

1 T(F) (1)
VAT (*3?) (x2 + s'y)%

Denote the parameters of the posterior distribution after having k
observations s, and y,:

p(x|s. ) =

SY + Tk . 5
s+ k' T _E ’

Sk =s+k, v =
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Imprecise Bayesian regression analysis

Imprecise Bayesian normal model (2)

The predictive CDF is

stk+2

\/E T (S+g+2)
z _ s+k+3
></ (sy+th+x%)" 2 dx

—00

F(zls.7) =

Properties of the predictive CDF:
@ if v, > 7, and z < 0, then F(z|s,y;) > F(z|s,7,),
Q if v, > 7, and z > 0, then F(z|s,vy) < F(z|s,7,),
Q if y; > 7, and z =0, then F(z|s,v;) = F(z|s,v,) = 0.5.

>
<
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Imprecise Bayesian regression analysis

Imprecise Bayesian normal model (3)

We take infy — 0 and supy =7 = max (2}, ..., z3). (ad-hoc

rule).
Then the lower bound F(*)(z) for the set M (d)

s [ F(z|s,0), z<0
F()(Z)_{ F(zls,7), z>0

The upper bound f(s)(z) for the set M (d)

=), v | F(z|s,7), z<0
F (Z)_{ F(z\s,g), z>0
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Imprecise Bayesian regression analysis

The imprecise Bayesian regression model

The logarithm of the likelihood function is
In L(s Z|dy_2]n< Vi —x m)-g“kw—xmw.
After some transformations:
InL)(Z | d) = Zln( yi — xid)? |0) — H(s)((y;—x,-d)2|7))_
In particular, if 9y — o0, we get

2 1 ===
yit
L) (Z | d) = Zm/ Ve g,
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Imprecise Bayesian regression analysis

The imprecise Bayesian regression model (simplification)

The logarithmic likelihood function can be simplified by taking
some terms of a power series. By taking two terms of the power
series of the function

1 sthke? 1, stht2
h(y) = Yy 2T, y 2 (sy+Tk) 2
)/)— s+k+3 . s+k+3 '
(T +y) 2 (sYy+T1k+y) 2
we get
12 12\ (s+k+3) (30 3
InL&)(Z | d) = EIn((zj —w )—f<zj —w )
2 2
L= Wmxd)” o (y—%d)
! Tk C SY+ Tk
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Imprecise Bayesian regression analysis

The imprecise Bayesian regression model

The logarithm of the likelihood function is
In L(s Z|dy_2]n< Vi —x m)-g“kw—xmw.
After some transformations:
InL)(Z | d) = Zln( yi — xid)? |0) — H(s)((y;—x,-d)2|7))_
In particular, if 9y — o0, we get

2 1 ===
yit
L) (Z | d) = Zm/ Ve g,
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Imprecise Bayesian regression analysis

The uniform distribution

|Z;i| has the uniform distribution (UD)

(]6) = 1/0, 0<z<¥6
piziv) = 0, otherwise

The conjugate prior to the UD is the Pareto distribution Pa(8|b, a).
The predictive CDF by given D = max(z, ..., z,) and
¢ = max(b, D) is

72(34— n) z<c
+n+1)c’ -
Flelzy=4  (@Fnile
z>c

1—
z#tn(a+n+1)’
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Imprecise Bayesian regression analysis

The imprecise Pareto-uniform model

The parameters a and b are replaced by a = s+ 1 and b = st,
t € [0, 00).
The bounds for the predictive cumulative distribution function are

F(x|X) =0,
1
= ?s(j-—: :——Z)g xsb
F(X|X) = ps+ntl
1-— x>D

Xs+n+1 (s—l—n—|—2)'
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Imprecise Bayesian regression analysis

The imprecise Pareto-uniform regression model

The logarithm of the likelihood function is

lyi—xid| - (s+n+1)
In L6 Z'( (s+n+2)D )

s+n+1)
:n|n((i+n+2)+2|n ’_y, Xd‘

The parameters d of the regression model do not depend on the
caution parameter s of the imprecise model.
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Imprecise regression analysis using the method of moments

The standard method of moments

The method of moments is a technique for constructing estimators
of the parameters that is based on matching the sample moments

with the corresponding distribution moments.

Let u,(6) be the i-th moment of Z: u;(0) = Ey(Z'
Let M;(Z) be the i-th sample moment: M;(Z) =1
i=1, .,k

To construct estimators (W4, ..., W) for parameters (61, ..., 6x),
we solve the set of equations

N, i=1,.. k.
Z

]’li(Wl' ey Wk) = M,‘(Zl, ...,Zn), i = ]., ey k

for (WA, ..., W) in terms of (Z4, ..., Zy).
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Imprecise regression analysis using the method of moments

The imprecise method of moments

By having kK moments, we can restrict a set of probability
distributions (or pdfs) by the constraints:

E(Z)=M;(Z|d), i=1,..,k

or
N P 1 n P 1 n i
ijl ﬂ(\/j)\/j = ; j=1 ZJI = ; Zj:l (yj - f(xj'd))l )
i=1,.. k.

Here 71 € M. In other words, the set of sample moments produces
the set M.
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Imprecise regression analysis using the method of moments

The imprecise method of moments and the likelihood

function

Proposition

Suppose that the initial information about the i-th discrete random
variable Z; produces a set M of probability distributions 7t(z),
i=1,...n IfZ, ..., Z, are independent, then there holds

Mina),;\/l,, Pr {Zl = 21, Zn - Zn} = il:{ﬁ(z,'),

where
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Imprecise regression analysis using the method of moments

The imprecise regression model using the method of
moments

The logarithmic likelihood function is
max InL(Z | d) In7T(y; — f(x;,d)).
max | d) Z )

Now the optimal vector dg can be found from the following system
of equations:

dnL(Z|d) .
T—O, I—l,...,m
7T(yi — f(x;,d))/9d;
=0 1,...m
T )

Lev Utkin Imprecise regression analysis



Imprecise regression analysis using the method of moments

A special case: two moments (modification of Chebyshev's
inequality)

We take only first two moments my = M;i(Z) and mp = Ma(Z).

Proposition

Suppose that the first moment m; = [EX and the second moment
my = IEX? of a continuous random variable X defined on the
sample space R are known. Then the upper probability of the
event t < X < t+ ¢ is defined as

1, t<m <t+4e
Pt t+e) = my — m3

( t) m 2 , otherwise
my — mp —
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Imprecise regression analysis using the method of moments

A special case: two moments (2)

The logarithm of the likelihood function is

mz(d) — mi(d)

maxInL(Z | d) = Zln

M(d) = (m(d) —y; — f(x;,d))2+ mao(d) — m3(d)’
where o

(@) = 3 (5= )

ma(d) = Y 05~ 7. )"
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Imprecise regression analysis using the method of moments

Confidence intervals on the mean and variance

Confidence intervals on the mean and variance:

ty/o.n—10(d) ta/2,N—la'(d>]

VN VN
[<N—1>@2<d> (N—l)frz(d)]

X2,x/2,N—1 ' le—(x/2,N—1

[my (d), 7 (d)] = [nu(d) - m(d) +
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Imprecise regression analysis using the method of moments

Questions
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