Standard regression analysis Imprecise regression analysis (a general idea) Imprecise Bayesian regression analysis Imprecise regression analysis using the method of moments

Imprecise regression analysis

Lev Utkin

Munich, September 2009

Standard regression models

- Suppose that we have two variables Y and X with Y being a dependent variable and X being predictor variable, related to Y according to the relation $Y = f(X, \mathbf{d}) + \epsilon$.
- The simplest case: the linear model $Y = bX + c + \epsilon$. Here b and c are parameters $(\mathbf{d} = (b, c))$ and ϵ is the random errors or the noise having zero mean and the unknown variance σ^2 .
- A linear regression model fits a linear function to a set of data points. When the variable X takes n specific values $x_1, ..., x_n$, the variables Y and ε take specific values y_i and ε_i , respectively, i=1,...,n, we get

$$y_i = bx_i + c + \epsilon_i, i = 1, ..., n.$$

The first idea: maximum of the likelihood function over the set of CDFs (continuous case)

Denote
$$z_i = y_i - f(x_i, \mathbf{d})$$
 and **Z** = $(z_1, ..., z_n)$.

1 Every r.v. Z_i or ϵ_i is governed by an unknown CDF belonging to a set $\mathcal{M}_i(\mathbf{d})$ depending on a vector of parameters \mathbf{d} and defined by **lower and upper CDFs**:

$$\underline{F}(z \mid \mathbf{d}) = \inf_{F(z) \in \mathcal{M}(\mathbf{d})} F(z), \ \overline{F}(z \mid \mathbf{d}) = \sup_{F(z) \in \mathcal{M}(\mathbf{d})} F(z).$$

② The likelihood function $L(\mathbf{Z} \mid \mathbf{d}, F)$ is maximized over all distributions F from $\mathcal{M}_i(\mathbf{d})$ and the resulting "modified" likelihood function depends on \mathbf{d} :

$$L(\mathbf{Z} \mid \mathbf{d}) = \max_{F \in \mathcal{M}(\mathbf{d})} L(\mathbf{Z} \mid \mathbf{d}, F).$$

Proposition

If random variables $Z_1, ..., Z_n$ are independent and continuous, then there holds

$$\max_{\mathcal{M}} L(\mathbf{z}) = \prod_{i=1}^{n} \left\{ \overline{F}(z_i) - \underline{F}(z_i) \right\} \delta(z_i).$$

Here $\delta(z)$ is Dirac function which has unit area concentrated in the immediate vicinity of point z.

Defining the lower and upper CDFs

The second question:

How to define the functions $\underline{F}(z \mid \mathbf{d})$ and $\overline{F}(z \mid \mathbf{d})$ or the set $\mathcal{M}(\mathbf{d})$?

The first answer:

By using the imprecise Bayesian models!

The second answer:

By using the method of moments!

The third answer:

By using confidence intervals on the mean and variance!

The Bayesian normal model

Let $\epsilon \sim N(0, \sigma^2)$. Denote $\lambda = 1/\sigma^2$. The conjugate prior distribution for λ is Gamma $(\lambda|a, b)$.

The predictive density function is

$$p(x|a,b) = \frac{1}{\sqrt{\pi}} \frac{b^a}{\Gamma(a)} \int_{-\infty}^{\infty} \lambda^{a-1/2} \exp\left(-\left[\frac{x^2 + 2b}{2}\right] \lambda\right) d\lambda.$$

If we denote

$$b^* = \frac{x^2 + 2b}{2}$$
, $a^* = a + 1/2$,

then

$$p(x|a,b) = \frac{1}{\sqrt{\pi}} \frac{\Gamma(a^*)}{\Gamma(a)} \frac{b^a}{(b^*)^{a^*}}.$$

Imprecise Bayesian normal model (1)

Replace a and b by parameters s and γ such that a=(s+2)/2 and $b=s\gamma/2$ (Quaeghebeur and de Cooman 2005). The predictive density is

$$p(x|s,\gamma) = \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{s+3}{2}\right)}{\Gamma\left(\frac{s+2}{2}\right)} \frac{(s\gamma)^{\frac{s+2}{2}}}{(x^2 + s\gamma)^{\frac{s+3}{2}}}$$

Denote the parameters of the posterior distribution after having k observations s_k and γ_k :

$$s_k = s + k$$
, $\gamma_k = \frac{s\gamma + \tau_k}{s + k}$, $\tau_k = \sum_{j=1}^k z_j^2$.

Imprecise Bayesian normal model (2)

The predictive CDF is

$$F(z|s,\gamma) = \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{s+k+3}{2}\right) \left(s\gamma + \tau_k\right)^{\frac{s+k+2}{2}}}{\Gamma\left(\frac{s+k+2}{2}\right)} \times \int_{-\infty}^{z} \left(s\gamma + \tau_k + x^2\right)^{-\frac{s+k+3}{2}} dx.$$

Properties of the predictive CDF:

- $\textbf{ 1} \ \, \text{if} \,\, \gamma_1 \geq \gamma_2 \,\, \text{and} \,\, z < 0, \,\, \text{then} \,\, F(z|s,\gamma_1) \geq F(z|s,\gamma_2), \\$
- ② if $\gamma_1 \geq \gamma_2$ and z > 0, then $F(z|s,\gamma_1) \leq F(z|s,\gamma_2)$,
- ullet if $\gamma_1 \geq \gamma_2$ and z=0, then $F(z|s,\gamma_1)=F(z|s,\gamma_2)=0.5$.

Imprecise Bayesian normal model (3)

We take inf $\gamma \to 0$ and sup $\gamma = \overline{\gamma} = \max(z_1^2, ..., z_m^2)$. (ad-hoc rule).

Then the lower bound $\underline{F}^{(s)}(z)$ for the set $\mathcal{M}(\mathbf{d})$

$$\underline{F}^{(s)}(z) = \left\{ \begin{array}{ll} F(z|s,0), & z < 0 \\ F(z|s,\overline{\gamma}), & z \geq 0 \end{array} \right.$$

The upper bound $\overline{F}^{(s)}(z)$ for the set $\mathcal{M}(\mathbf{d})$

$$\overline{F}^{(s)}(z) = \left\{ egin{array}{ll} F(z|s,\overline{\gamma}), & z < 0 \ F(z|s,0), & z \geq 0 \end{array}
ight. .$$

The imprecise Bayesian regression model

The logarithm of the likelihood function is

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{i=1}^{m} \ln \left(\overline{F}^{(s)}(y_i - \mathbf{x}_i \mathbf{d}) - \underline{F}^{(s)}(y_i - \mathbf{x}_i \mathbf{d}) \right).$$

After some transformations:

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{i=1}^{m} \ln \left(H^{(s)}((y_i - \mathbf{x}_i \mathbf{d})^2 \mid 0) - H^{(s)}((y_i - \mathbf{x}_i \mathbf{d})^2 \mid \overline{\gamma}) \right).$$

In particular, if $\overline{\gamma} \longrightarrow \infty$, we get

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{j=1}^{m} \ln \int_{0}^{(y_{j} - \mathbf{x}_{j} \mathbf{d})^{2}} \frac{y^{-\frac{1}{2}} \tau_{k}^{\frac{s+k+2}{2}}}{(\tau_{k} + y)^{\frac{s+k+3}{2}}} dy.$$

The imprecise Bayesian regression model (simplification)

The logarithmic likelihood function can be simplified by taking some terms of a power series. By taking two terms of the power series of the function

$$h(y) = \left(\frac{y^{-\frac{1}{2}}\tau_k^{\frac{s+k+2}{2}}}{\left(\tau_k + y\right)^{\frac{s+k+3}{2}}} - \frac{y^{-\frac{1}{2}}\left(s\overline{\gamma} + \tau_k\right)^{\frac{s+k+2}{2}}}{\left(s\overline{\gamma} + \tau_k + y\right)^{\frac{s+k+3}{2}}}\right),$$

we get

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{j=1}^{m} \ln \left(2 \left(z_j^{1/2} - w_j^{1/2} \right) - \frac{(s+k+3)}{3} \left(z_j^{3/2} - w_j^{3/2} \right) \right)$$

$$z_j = \frac{(y_j - \mathbf{x}_j \mathbf{d})^2}{\tau_k}, \quad w_j = \frac{(y_j - \mathbf{x}_j \mathbf{d})^2}{s\overline{\gamma} + \tau_k}.$$

The imprecise Bayesian regression model

The logarithm of the likelihood function is

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{i=1}^{m} \ln \left(\overline{F}^{(s)}(y_i - \mathbf{x}_i \mathbf{d}) - \underline{F}^{(s)}(y_i - \mathbf{x}_i \mathbf{d}) \right).$$

After some transformations:

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{i=1}^{m} \ln \left(H^{(s)}((y_i - \mathbf{x}_i \mathbf{d})^2 \mid 0) - H^{(s)}((y_i - \mathbf{x}_i \mathbf{d})^2 \mid \overline{\gamma}) \right).$$

In particular, if $\overline{\gamma} \longrightarrow \infty$, we get

$$\ln L^{(s)}(\mathbf{Z} \mid \mathbf{d}) = \sum_{j=1}^{m} \ln \int_{0}^{(y_{j} - \mathbf{x}_{j} \mathbf{d})^{2}} \frac{y^{-\frac{1}{2}} \tau_{k}^{\frac{s+k+2}{2}}}{(\tau_{k} + y)^{\frac{s+k+3}{2}}} dy.$$

The uniform distribution

 $|Z_i|$ has the uniform distribution (UD)

$$p(z|\theta) = \left\{ egin{array}{ll} 1/ heta, & 0 \leq z \leq heta \ 0, & ext{otherwise} \end{array}
ight. .$$

The conjugate prior to the UD is the Pareto distribution $Pa(\theta|b,a)$. The predictive CDF by given $D = \max(z_1,...,z_n)$ and $c = \max(b,D)$ is

$$F(z|\mathbf{Z}) = \left\{ egin{array}{ll} rac{z(a+n)}{(a+n+1)c}, & z \leq c \ 1 - rac{c^{a+n}}{z^{a+n}\,(a+n+1)}, & z > c \end{array}
ight. .$$

The imprecise Pareto-uniform model

The parameters a and b are replaced by a = s + 1 and b = st, $t \in [0, \infty)$.

The bounds for the predictive cumulative distribution function are

$$\overline{F}(x|\mathbf{X}) = 0,$$

$$\overline{F}(x|\mathbf{X}) = \begin{cases} \frac{x(s+n+1)}{(s+n+2)D}, & x \leq D\\ 1 - \frac{D^{s+n+1}}{x^{s+n+1}(s+n+2)}, & x > D \end{cases}.$$

The imprecise Pareto-uniform regression model

The logarithm of the likelihood function is

$$\ln L^{(s)}(\mathbf{Z}|\mathbf{d}) = \sum_{i=1}^{n} \ln \left(\frac{|y_i - \mathbf{x}_i \mathbf{d}| \cdot (s+n+1)}{(s+n+2)D} \right)$$
$$= n \cdot \ln \left(\frac{(s+n+1)}{(s+n+2)D} \right) + \sum_{i=1}^{n} \ln \left(|y_i - \mathbf{x}_i \mathbf{d}| \right)$$

The parameters \mathbf{d} of the regression model do not depend on the caution parameter s of the imprecise model.

The standard method of moments

The *method of moments* is a technique for constructing estimators of the parameters that is based on matching the sample moments with the corresponding distribution moments.

Let $\mu_i(\theta)$ be the *i*-th moment of Z: $\mu_i(\theta) = \mathbb{E}_{\theta}(Z^i)$, i = 1, ..., k. Let $M_i(Z)$ be the *i*-th sample moment: $M_i(\mathbf{Z}) = \frac{1}{n} \sum_{j=1}^n Z_j^i$, i = 1, ..., k.

To construct estimators $(W_1, ..., W_k)$ for parameters $(\theta_1, ..., \theta_k)$, we solve the set of equations

$$\mu_i(W_1,...,W_k) = M_i(Z_1,...,Z_n), i = 1,...,k$$

for $(W_1, ..., W_k)$ in terms of $(Z_1, ..., Z_n)$.

The imprecise method of moments

By having k moments, we can restrict a set of probability distributions (or pdfs) by the constraints:

$$\mathbb{E}(Z^i) = M_i(\mathbf{Z} \mid \mathbf{d}), \ i = 1, ..., k,$$

or

$$\sum_{j=1}^{N} \pi(v_j) v_j^i = \frac{1}{n} \sum_{j=1}^{n} z_j^i = \frac{1}{n} \sum_{j=1}^{n} (y_j - f(\mathbf{x}_j, \mathbf{d}))^i,$$

$$i = 1, ..., k.$$

Here $\pi \in \mathcal{M}$. In other words, the set of sample moments produces the set \mathcal{M} .

The imprecise method of moments and the likelihood function

Proposition

Suppose that the initial information about the i-th discrete random variable Z_i produces a set \mathcal{M}_i of probability distributions $\pi(z)$, i = 1, ..., n. If $Z_1, ..., Z_n$ are independent, then there holds

$$\max_{\mathcal{M}_1,...,\mathcal{M}_n} \Pr\left\{Z_1 = z_1,...,Z_n = z_n\right\} = \prod_{i=1}^n \overline{\pi}(z_i),$$

where

$$\overline{\pi}(z_i) = \max_{\mathcal{M}_i} \Pr\left\{Z_i = z_i\right\}.$$

The imprecise regression model using the method of moments

The logarithmic likelihood function is

$$\max_{\mathcal{M}(\mathbf{d})} \ln L(\mathbf{Z} \mid \mathbf{d}) = \sum_{i=1}^{n} \ln \overline{\pi}(y_i - f(\mathbf{x}_i, \mathbf{d})).$$

Now the optimal vector \mathbf{d}_0 can be found from the following system of equations:

$$\frac{\partial \ln L(\mathbf{Z} \mid \mathbf{d})}{\partial d_i} = 0, \ i = 1, ..., m$$

$$\sum_{i=1}^n \frac{\partial \overline{\pi}(y_i - f(\mathbf{x}_i, \mathbf{d})) / \partial d_j}{\overline{\pi}(y_i - f(\mathbf{x}_i, \mathbf{d}))} = 0, \ j = 1, ..., m.$$

A special case: two moments (modification of Chebyshev's inequality)

We take only first two moments $m_1 = M_1(\mathbf{Z})$ and $m_2 = M_2(\mathbf{Z})$.

Proposition

Suppose that the first moment $m_1 = \mathbb{E}X$ and the second moment $m_2 = \mathbb{E}X^2$ of a continuous random variable X defined on the sample space \mathbb{R} are known. Then the upper probability of the event $t \leq X \leq t + \varepsilon$ is defined as

$$\overline{P}(t,t+arepsilon) = \left\{ egin{array}{cc} 1, & t < m_1 < t + arepsilon \ rac{m_2 - m_1^2}{(m_1 - t)^2 + m_2 - m_1^2}, & ext{otherwise} \end{array}
ight..$$

A special case: two moments (2)

The logarithm of the likelihood function is

$$\max_{\mathcal{M}(\mathbf{d})} \ln L(\mathbf{Z} \mid \mathbf{d}) = \sum_{i=1}^n \ln \frac{m_2(\mathbf{d}) - m_1^2(\mathbf{d})}{(m_1(\mathbf{d}) - y_i - f(\mathbf{x}_i, \mathbf{d}))^2 + m_2(\mathbf{d}) - m_1^2(\mathbf{d})},$$

where

$$m_1(\mathbf{d}) = \frac{1}{n} \sum_{i=1}^n (y_j - f(\mathbf{x}_j, \mathbf{d})),$$

$$m_2(\mathbf{d}) = \frac{1}{n} \sum_{i=1}^n (y_j - f(\mathbf{x}_j, \mathbf{d}))^2.$$

Confidence intervals on the mean and variance

Confidence intervals on the mean and variance:

$$[\underline{m}_{1}(\mathbf{d}), \overline{m}_{1}(\mathbf{d})] = \left[m_{1}(\mathbf{d}) - \frac{t_{\alpha/2, N-1}\hat{\sigma}(\mathbf{d})}{\sqrt{N}}, \ m_{1}(\mathbf{d}) + \frac{t_{\alpha/2, N-1}\hat{\sigma}(\mathbf{d})}{\sqrt{N}}\right],$$

$$[\underline{M}_{1}(\mathbf{d}), \overline{m}_{1}(\mathbf{d})] = \left[m_{1}(\mathbf{d}) - \frac{t_{\alpha/2, N-1}\hat{\sigma}(\mathbf{d})}{\sqrt{N}}, \ m_{1}(\mathbf{d}) + \frac{t_{\alpha/2, N-1}\hat{\sigma}(\mathbf{d})}{\sqrt{N}}\right],$$

$$\left[\underline{\sigma}^{2}(\mathbf{d}), \overline{\sigma}^{2}(\mathbf{d})\right] = \left[\frac{(N-1)\hat{\sigma}^{2}(\mathbf{d})}{\chi^{2}_{\alpha/2, N-1}}, \frac{(N-1)\hat{\sigma}^{2}(\mathbf{d})}{\chi^{2}_{1-\alpha/2, N-1}}\right],$$

$$\underline{F}(x \mid \mathbf{d}) = \min \left\{ \Phi \left((x - \overline{m}_1(\mathbf{d})) / \overline{\sigma}(\mathbf{d}) \right), \Phi \left((x - \overline{m}_1(\mathbf{d})) / \underline{\sigma}(\mathbf{d}) \right) \right\},$$

$$\overline{F}(x\mid \mathbf{d}) = \max\left\{\Phi\left((x-\underline{m}_1(\mathbf{d}))/\overline{\sigma}(\mathbf{d})\right), \Phi\left((x-\underline{m}_1(\mathbf{d}))/\underline{\sigma}(\mathbf{d})\right)\right\}.$$

$$\hat{\sigma}^2(\mathbf{d}) = \frac{1}{n} \sum_{j=1}^n \left(y_j - f(\mathbf{x}_j, \mathbf{d}) \right)^2 - \left(\frac{1}{n} \sum_{j=1}^n \left(y_j - f(\mathbf{x}_j, \mathbf{d}) \right) \right)^2.$$

Standard regression analysis Imprecise regression analysis (a general idea) Imprecise Bayesian regression analysis Imprecise regression analysis using the method of moments

Questions

?