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Initial statistical data

1 We have a set of observations X = (x1, ..., xn), for instance,
the successive intervals between failures.

2 x1, ..., xn are a realization of random variables X1, ...,Xn. The
r.v. Xi is governed by a pdf pi (x j bi ,d) with vectors of
parameters bi ,d.

3 It is assumed that there exists a function f (i ,b,d) such that
the vector bi completely depends on the number i and the
vectors of parameters b, d through the function f , i.e.,
bi = f (i ,b,d).
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A standard way for computing the parameters

The likelihood function is

L(X j b,d) = PrfX1 = x1, ...,Xn = xng

=
n

∏
i=1

pi (xi j bi ,d).

Values of the parameters b, d should be chosen in such a way that
makes L(K j b,d) achieve its maximum.
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Problems we could meet

1 A large number of parameters and the small amount of
statistical data:

it is di�cult to estimate the actual impact of every parameter;
it is di�cult to compute the optimal values of parameters.

2 The precise distribution or pdf pi might be unknown. We can
say only about some set of distributionsMi due to:

the limited amount of statistical data.
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The �rst obvious idea (1)

The �rst obvious idea following from the second problem:
Every Xi is governed by an unknown CDF belonging to a set
Mi (d) depending on a vector of parameters d and de�ned by
lower and upper CDFs:

F i (x j d) = inf
F (x)2Mi (d)

F (x), F i (x j d) = sup
F (x)2Mi (d)

F (x).
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The �rst obvious idea (2)

IMPORTANT:

1 Mi (d) is the set of all CDFs bounded by F i (k j d) and
F i (k j d), so it is not the set of parametric distributions
having the same parametric form as the bounding
distributions.

2 Mi (d) depends on d.

3 We can not now maximize of the standard likelihood function
over parameters. What can we do?
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The second idea: maximum of the likelihood function over
the set of CDFs

1 The standard likelihood function is the joint probability which
has to be maximized over sets of parameters. But we have a
set of probabilities. Therefore, we choose the largest
probability in the set, i.e., we maximize the likelihood function
over the set of probabilities depending on d.

2 Let us �x the parameters d.

3 The likelihood function L(X j d,F ) is maximized over all
distributions F fromMi (d) and the resulting \modi�ed"
likelihood function depends on d:

L�(X j d) = max
F2M1(d),...,F2Mn(d)

L(X j d,F ).
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The third idea: maximum of the \modi�ed" likelihood
function over the set of parameters d

By assuming that the \modi�ed" likelihood function L�(X j d)
depends on d, we maximize it over the set of d in order to �nd d,
i.e.,

L�(X j d)! max
d
.
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Returning to the second idea: maximum of the likelihood
function over the set of CDFs

In other words, we have to �nd optimal distribution functions
in everyMi (d) which can depend on d.

How to �nd them?
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The maximized likelihood function (discrete case)

Proposition

If random variables X1, ...,Xn are independent and discrete, then
there holds

max
M
Pr fX1 = x1, ...,Xn = xng =

n

∏
i=1

�
F i (xi )� F i (xi � 1)

	
.
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\Precise" case

Corollary

If F i (x) = F i (x) = Fi (x), then

max
M
Pr fX1 = x1, ...,Xn = xng =

n

∏
i=1

pi (xi ) = L(X j d).

Here pi (k) is the probability mass function corresponding to the
distribution function Fi (k).

We have the standard likehood function.
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The maximized likelihood function (continuous case)

Proposition

If random variables X1, ...,Xn are independent and continuous,
then there holds

max
M
Pr fX1 = x1, ...,Xn = xng =

n

∏
i=1

�
F i (xi )� F i (xi )

	
δ(xi ).
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Optimal distribution function (continuous case)
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The maximized likelihood function (the lack of
independence)

Proposition

If there is no information about independence of random variables
X1, ...,Xn, then there holds

max
M
Pr fX1 = x1, ...,Xn = xng = min

i=1,...,n

�
F i (xi )� F i (xi � 1)

	
.
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\Precise" case

Corollary

If F i (x) = F i (x), then

max
M
Pr fX1 = x1, ...,Xn = xng = min

i=1,...,n
pi (xi ).

We have the possibilistic likehood function.
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Returning to the third idea: maximum of the \modi�ed"
likelihood function over the set of parameters d

L�(X j d) =
nO
i=1

�
F i (xi j d)� F i (xi � 1 j d)

	
! max

d
.

Here the operator
N
can be ∏ (independence) or min (unknown

interaction).
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The next problem is how to construct the lower and upper
CDFs

Three obvious methods can be proposed:

1 Using the imprecise Bayesian models.

2 Using the method of moments.

3 Using the con�dence intervals on the mean and variance.
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The imprecise Bayesian inference models

1 Imprecise Dirichlet model (Walley 1996);

2 Imprecise models for inference in exponential families
(Quaeghebeur and de Cooman 2005).

The lower and upper CDFs forMi (d) are constructed by means of
an imprecise Bayesian model conditioned on the parameters d
and the function f (i ,b,d). The parameters b are replaced by
caution parameter s or parameters s1, s2. The imprecision of the
model is de�ned by the caution parameter s.
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The imprecise method of moments (1)

By having k moments, we can restrict a set of probability
distributions (or pdfs) by the constraints:

E(x i ) = mi (d), i = 1, ..., k,

or

∑N

j=1
p(vj )v

i
j =

1

n ∑n

j=1
x ij , i = 1, ..., k,

or Z ∞

�∞
v ip(v)dv =

1

n ∑n

j=1
x ij , i = 1, ..., k.

Here p 2 M. In other words, the set of sample moments produces
the setM.
The imprecision is de�ned by a number of moments.
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The imprecise method of moments (2)

The parametric (with parameters d) linear programming:

F (x j d) = min
p

∑N
j=1 p(vj )I(�∞,x ](vj ),

F (x j d) = max
p

∑N
j=1 p(vj )I(�∞,x ](vj ),

subject to

∑N
j=1 p(vj )v

i
j = mi (d), i = 1, ..., k.

In regression models: xj = yj � f (xj ,d) and:

mi (d) =
1

n
∑n
j=1 (yj � f (xj ,d))

i .
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The imprecise method of moments (3)

The parametric (with parameters d) linear programming:

F (x j d) = min
p

Z ∞

�∞
I(�∞,x ](v)p(v)dv ,

F (x j d) = max
p

Z ∞

�∞
I(�∞,x ](v)p(v)dv ,

subject to Z ∞

�∞
v ip(v)dv = mi (d), i = 1, ..., k.

In regression models: xj = yj � f (xj ,d) and:

mi (d) =
1

n
∑n
j=1 (yj � f (xj ,d))

i .
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The imprecise method of moments (4): example -
Chebyshev's inequality

We take only two moments and obtain Chebyshev's inequality.
Bounds for the CDF are

F (t j d) =

8<: 1� m2(d)�m21(d)
(m1(d)� t)2 +m2(d)�m21(d)

, t � m1(d)

0, t < m1(d)
,

F (t j d) =

8<:
m2(d)�m21(d)

(m1(d)� τ)2 +m2(d)�m21(d)
, t � m1(d)

1, t > m1(d)
.
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Con�dence intervals on the mean and variance

95% con�dence intervals on the mean and variance (α = 0.05):

[m1(d),m1(d)] =

�
m1(d)�

tα/2,N�1σ̂(d)p
N

, m1(d) +
tα/2,N�1σ̂(d)p

N

�
,

�
σ2(d), σ2(d)

�
=

�
(N � 1)σ̂2(d)

χ2α/2,N�1
,
(N � 1)σ̂2(d)
χ21�α/2,N�1

�
,

F (x j d) = min fΦ ((x �m1(d))/σ(d)) ,Φ ((x �m1(d))/σ(d))g ,
F (x j d) = max fΦ ((x �m1(d))/σ(d)) ,Φ ((x �m1(d))/σ(d))g .

The imprecision is de�ned by α. In regression models:

σ̂2(d) =
1

n
∑n
j=1 (yj � f (xj ,d))

2 �
�
1

n
∑n
j=1 (yj � f (xj ,d))

�2
.
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Returning to the third idea: maximum of the \modi�ed"
likelihood function over the set of parameters d

Now the \modi�ed" likelihood function has been de�ned

L�(X j d) =
nO
i=1

�
F i (xi j d)� F i (xi � 1 j d)

	
! max

d
.
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Questions

?

Lev Utkin Imprecise Two-Stage Maximum Likelihood Estimation


	Standard maximum likelihood estimation and its shortcomings
	Main ideas of the imprecise models
	Bounds for the set of CDF

