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Problem Description

maximality

interval dominance

max exp utility

Γ-maximin

E-admissibility

robust Bayes
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Problem Description

Aim: study sequential decision processes for all of these typical
generalizations of maximizing expected utility.

common aspects of all such generalizations?
I events E on some possibility space Ω
I rewards r in some reward set R
I decisions d in some decision set D
I some means of selecting decisions based on uncertain rewards

choice function opt on sets of gambles
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Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space
Ω to the reward set R.

“probabilityless (horse-)lottery”

Definition

A choice function opt selects, for any set of gambles X and event A, a
subset of X :

∅ 6= opt(X|A) ⊆ X

How to solve sequential decision problems
with a choice function?
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Decision Trees: Example
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d2

S
2d S

r1
E1

r2E2

d1

r3
E1

r4E2

d2

d
S

decision nodes + decisions

chance nodes + events

rewards

no probabilities or
utilities assumed!

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 8 / 35



Decision Trees: Example

r1
E1

r2E2

d1

r3
E1

r4E2

d2S 1

r1
E1

r2E2

d1

r3
E1

r4E2

d2

S
2d S

r1
E1

r2E2

d1

r3
E1

r4E2

d2

d
S

decision nodes + decisions

chance nodes + events

rewards

no probabilities or
utilities assumed!

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 8 / 35



Decision Trees: Example

r1
E1

r2E2

d1

r3
E1

r4E2

d2S 1

r1
E1

r2E2

d1

r3
E1

r4E2

d2

S
2d S

r1
E1

r2E2

d1

r3
E1

r4E2

d2

d
S

decision nodes + decisions

chance nodes + events

rewards

no probabilities or
utilities assumed!

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 8 / 35



Decision Trees: Example

r1
E1

r2E2

d1

r3
E1

r4E2

d2S 1

r1
E1

r2E2

d1

r3
E1

r4E2

d2

S
2d S

r1
E1

r2E2

d1

r3
E1

r4E2

d2

d
S

decision nodes + decisions

chance nodes + events

rewards

no probabilities or
utilities assumed!

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 8 / 35



Decision Trees: Example

r1
E1

r2E2

d1

r3
E1

r4E2

d2S 1

r1
E1

r2E2

d1

r3
E1

r4E2

d2

S
2d S

r1
E1

r2E2

d1

r3
E1

r4E2

d2

d
S

decision nodes + decisions

chance nodes + events

rewards

no probabilities or
utilities assumed!

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 8 / 35



Decision Trees: Normal Form Decisions

Definition

A normal form decision fixes at every decision node exactly one decision.
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Decision Trees: Gambles

r1
E1

r2E2
S 1

r3
E1

r4E2

S
2

=

r1

S 1
E 1

r2S1E2

r3S2E1

r4

S
2 E

2

= X (ω) =


r1 if ω ∈ S1E1

r2 if ω ∈ S1E2

r3 if ω ∈ S2E1

r4 if ω ∈ S2E2

Observation

Every normal form decision induces a gamble.
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Decision Trees: Normal Form Solution

Definition

A normal form solution of a decision tree is a set of these normal form
decisions.

for example

cake

custard
scones

could have as normal form solution{ cake

custard
scones

,

cake

custard
scones

}

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 12 / 35



Decision Trees: Normal Form Solution

Definition

A normal form solution of a decision tree is a set of these normal form
decisions.

for example

cake

custard
scones

could have as normal form solution{ cake

custard
scones

,

cake

custard
scones

}

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 12 / 35



Decision Trees: Normal Form Solution Induced By opt

decision tree
set of

normal form
decisions

set of
gambles

set of
optimal
gambles

opt

set of
optimal

normal form
decisions

act-state
independence!
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Decision Trees: Normal Form Solution Induced By opt

If we have a choice function opt
then we can in principle solve arbitrary decision trees!

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 14 / 35
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Factuality: A Counterfactual Example

Suppose opt

( cake

custard
scones

)

=

{ cake

custard
scones

}

but opt

(
cake

custard

)
=

{
cake

custard

}

The choice between cake and custard
depends on the tree in which the decision is embedded.
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Factuality: Definition

Definition

opt is called factual whenever for every decision tree

restriction(opt(tree)) = opt(restriction(tree))

whenever restriction(tree)’s root node is in opt(tree).

In bargaining theory this principle is called subgame perfection.

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 17 / 35



Factuality Theorem

Theorem

opt is factual if and only if it satisfies:

Conditioning property. If {X ,Y } ⊆ X and AX = AY , then

X ∈ opt(X|A) ⇐⇒ Y ∈ opt(X|A).

Intersection property. If Y ⊆ X and opt(X|A) ∩ Y 6= ∅, then

opt(Y|A) = opt(X|A) ∩ Y.

Mixture property.

opt(AX ⊕ AZ |B) = A opt(X|A ∩ B)⊕ AZ .

Note: some technical details omitted.

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 18 / 35



Factuality: No Imprecision

Total Preorder Theorem

The intersection property is equivalent to:

Total preorder property. For every event A 6= ∅, there is a total
preorder �A on gambles such that

opt(X|A) = max
�A

(X )

So it is impossible to be at the same time

factual, and

optimal with respect a non-total preference ordering
(such as for instance a partial preference ordering)

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 19 / 35



Factuality: What Choice Functions are Factual?

choice function
on gambles

set of partial
orders

partial
order

maximality

interval dominance

order

max exp utility

Γ-maximin

set of
orders

E-admissibility

robust Bayes

violates mixture
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Factuality: What Can Be Done?

Some types of counterfactuality may not be so bad,
for instance those where backward induction still works
(such as maximality and E-admissibility).

Restrict type of decision trees that you are interested in:
there are sequential decision processes where factuality can be
obtained under substantially weaker assumptions.

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 21 / 35
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Locality: Markov Decision Processes

rd1
s0s1

+ γrd2
s1s2

s2

pd2
s1s2

d2s1

pd1
s0s1

d1s0

Solution for an n-stage process:

V n
n+1(s) = 0 V n

k+1(s) = max
d

∑
t

pd
st(rd

st + γV n
k (t))

Under act-state independence, pd
st = pst , and so:

V n
n+1(s) = 0 V n

k+1(s) =

(
max

d

∑
t

pstrd
st

)
+ γ

∑
t

pstV n
k (t)
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Locality: Markov Decision Processes

Observation

Under act-state independence, the solution becomes trivial:

global solution to sequential problem
⇐⇒

sequence of solutions to local problems

“locality”

Under what conditions on opt do we have locality?
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Locality: Sequential Decision Process on S0, . . . , Sn

states S0, . . . , Sn: sequence of random variables

history hk = (s0, . . . , sk): sequence of observed states

decisions and local rewards
I observe s0 ∈ S0,
I pick d1 ∈ D1, see S1 = s1, get r1(s0d1s1) = r1(h0d1s1),
I pick d2 ∈ D2, see S2 = s2, get r2(s0s1d2s2) = r2(h1d2s2),
I . . .
I pick dn ∈ Dn, see Sn = sn, get rn(hn−1dnsn).

+ operator on R with 0: r + 0 = r

combined reward (evaluate from right to left)

r1(h0d1s1) + r2(h1d2s2) + · · ·+ rn(hn−1dnsn)

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 25 / 35



Locality: Policies

Assume s0d1s1 . . . dk−1sk−1 has occurred
then a normal form decision, or policy πn

k , consists of

a decision dk ∈ Dk ,

a decision function dk+1(sk) ∈ Dk+1,

. . .

a decision function dn(sk . . . sn−1) ∈ Dn.

Definition

Set of all policies for an n-stage process at the k-th stage:

Πn
k = Dk × DSk

k+1 × · · · × D
Sk×···×Sn−1
n

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 26 / 35



Locality: Gambles and Optimality

Definition

Each policy πn
k = Πn

k incurs a gamble X n
k (hk−1, π

n
k).

Definition

The set of all these gambles is

X n
k (hk−1) = {X (hk−1, π

n
k) : πn

k ∈ Πn
k}

Definition

Set of all optimal policies is

Πn
k(hk−1) = {πn

k ∈ Πn
k : X n

k (hk−1, π
n
k) ∈ opt(X n

k (hk−1)|hk−1)}

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 27 / 35



Locality: Definition

Definition

opt is said to satisfy locality on S0, . . . , Sn whenever for every sequential
decision process on S0, . . . , Sn and every 1 ≤ k ≤ n:

Πn
k(·) = Πk

k(·)× Πk+1
k+1(·)× · · · × Πn

n(·)

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 28 / 35



Locality: Definition

Definition

opt is said to satisfy locality on S0, S1, S2 whenever

opt
(

r1(s0d1s1) +
r2(s0s1d2s2)s2d2s1d1s0

∣∣∣s0

)

= opt
(

r1(s0d1s1)
s1d1s0

∣∣∣s0

)

× opt
(

r2(s0s1d2s2)
s2d2s0s1

∣∣∣s0s1

)

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 29 / 35



Locality: Definition

Definition

opt is said to satisfy locality on S0, S1, S2 whenever

opt
(

r1(s0d1s1) +
r2(s0s1d2s2)s2d2s1d1s0

∣∣∣s0

)

= opt
(

r1(s0d1s1)
s1d1s0

∣∣∣s0

)

× opt
(

r2(s0s1d2s2)
s2d2s0s1

∣∣∣s0s1

)

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 29 / 35



Locality: Definition

Definition

opt is said to satisfy locality on S0, S1, S2 whenever

opt
(

r1(s0d1s1) +
r2(s0s1d2s2)s2d2s1d1s0

∣∣∣s0

)

= opt
(

r1(s0d1s1)
s1d1s0

∣∣∣s0

)

× opt
(

r2(s0s1d2s2)
s2d2s0s1

∣∣∣s0s1

)

Troffaes, Huntley, Shirota (Durham) Factuality and Locality 11th September 2009 29 / 35



Locality: Definition

Definition

opt is said to satisfy locality on S0, S1, S2 whenever

opt
(

r1(s0d1s1) +
r2(s0s1d2s2)s2d2s1d1s0

∣∣∣s0

)

= opt
(

r1(s0d1s1)
s1d1s0

∣∣∣s0

)
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Locality Theorem

Theorem

opt satisfies locality on S0, . . . , Sn if and only if it satisfies:

Sequential distributivity. For any 1 ≤ k < n, any value hk−1 of Hk−1,
all finite sets of gambles X on Sk , all finite sets of gambles Y(sk) on
Fk+1 (one such set for each sk ∈ Sk), and all X ∈ X and
Y (sk) ∈ Y(sk):

X +
⊕
sk

Esk Y (sk) ∈ opt

(
X +

⊕
sk

EskY(sk)

∣∣∣∣hk−1

)
⇐⇒

X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk .
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Locality: Maximality

Proposition

Maximality with respect to P satisfies sequential
distributivity (and hence, locality) on S0, . . . , Sn,
if and only if for all 1 ≤ k < n, all hk−1 ∈ Hk−1 = S0 × · · · × Sk−1, all
sk ∈ Sk , and all gambles Z on Fk = Sk × · · · × Sn,

P(Esk |hk−1) > 0

and
P(Z |hk−1) = P(P(Z |hk−1Sk)|hk−1).

strictly positive transition probabilities

marginal extension
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Locality: E-admissibility

Proposition

E-admissibility with respect to P satisfies sequential
distributivity (and hence, locality) on S0, . . . , Sn,
if and only if for all 1 ≤ k < n, all hk−1 ∈ Hk−1 = S0 × · · · × Sk−1, all
sk ∈ Sk , and all gambles Z on Fk = Sk × · · · × Sn,

P(Esk |hk−1) > 0

and
P(Z |hk−1) = P(P(Z |hk−1Sk)|hk−1).

strictly positive transition probabilities

marginal extension
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Locality: Γ-maximin

Locality for Γ-maximin fails under these conditions. . .
However:

Observation

Globally optimal solution could of course still be obtained by non-local
means (i.e. backward induction á la Satia and Lave).

Observation

Any Γ-maximin solution obtained locally will be globally optimal with
respect to maximality.
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Conclusion and Challenges

Factuality and locality provide rationality arguments for
I total preference orderings: say no to imprecision
I marginal extension
I strictly positive transition lower probabilities

(although some of these may be stronger than you’d like!)

Locality can be satisfied for non-total orderings such as
I maximality
I E-admissibility

Local Γ-maximin
I may not be global Γ-maximin!
I but it is not entirely stupid either

Challenges:

is the definition of factuality too strong?

how to accomodate act-state dependence?!
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Thanks for your attention!

questions? comments? discussion?
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