Factuality and Locality with Arbitrary Choice Functions

Matthias C. M. Troffaes Nathan Huntley Ricardo Shirota

Durham University

11th September 2009

The crazy three

- Matthias C. M. Troffaes
 - lecturer in statistics at Durham University
 - foundations of statistics
 - sequential decision making, dynamic programming
 - imprecise probabilities
 - reliability, fault trees

The crazy three

- Matthias C. M. Troffaes
 - lecturer in statistics at Durham University
 - foundations of statistics
 - sequential decision making, dynamic programming
 - imprecise probabilities
 - reliability, fault trees
- Nathan Huntley
 - PhD student at Durham University
 - supervised by Matthias Troffaes
 - sequential decision making
 - imprecise probabilities

The crazy three

- Matthias C. M. Troffaes
 - lecturer in statistics at Durham University
 - foundations of statistics
 - sequential decision making, dynamic programming
 - imprecise probabilities
 - reliability, fault trees
- Nathan Huntley
 - PhD student at Durham University
 - supervised by Matthias Troffaes
 - sequential decision making
 - imprecise probabilities
- Ricardo Shirota
 - PhD student at the University of Sao Paulo
 - supervised by Prof. Fabio G. Cozman
 - currently visiting Durham
 - Markov decision processes (sequential decision making)
 - imprecise probabilities
 - artificial intelligence planning
 - algorithms

Outline

Introduction

- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Factuality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

Locality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

Outline

Introduction

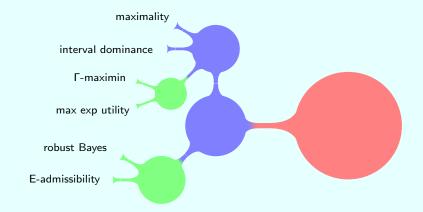
- Problem Description
- Gambles and Choice Functions
- Decision Trees

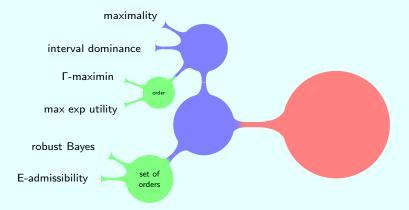
2 Factuality

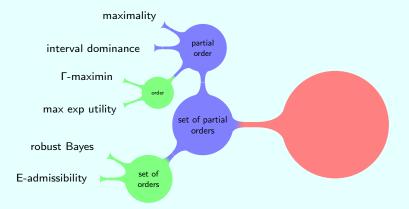
- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

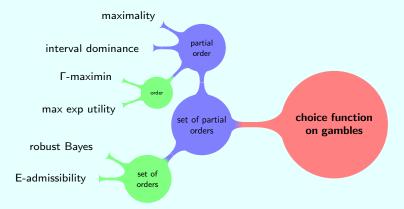
3 Locality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples









• common aspects of all such generalizations?

- o common aspects of all such generalizations?
 - events E on some possibility space Ω

- o common aspects of all such generalizations?
 - events E on some possibility space Ω
 - rewards r in some reward set \mathcal{R}

o common aspects of all such generalizations?

- events E on some possibility space Ω
- rewards r in some reward set \mathcal{R}
- decisions d in some decision set D

o common aspects of all such generalizations?

- events E on some possibility space Ω
- rewards r in some reward set R
- decisions d in some decision set D
- some means of selecting decisions based on uncertain rewards

choice function opt on sets of gambles

Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space Ω to the reward set \mathcal{R} .

"probabilityless (horse-)lottery"

Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space Ω to the reward set \mathcal{R} .

"probabilityless (horse-)lottery"

Definition

A choice function opt selects, for any set of gambles \mathcal{X} and event A, a subset of \mathcal{X} :

 $\emptyset \neq \mathsf{opt}(\mathcal{X}|A) \subseteq \mathcal{X}$

Gambles and Choice Functions

Definition

A gamble is an uncertain reward, i.e. a mapping from the possibility space Ω to the reward set \mathcal{R} .

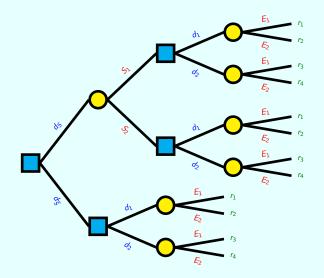
"probabilityless (horse-)lottery"

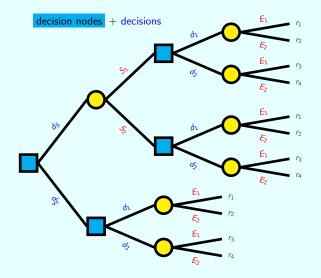
Definition

A choice function opt selects, for any set of gambles \mathcal{X} and event A, a subset of \mathcal{X} :

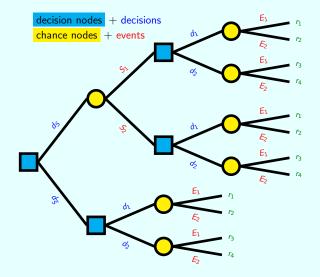
 $\emptyset \neq \mathsf{opt}(\mathcal{X}|A) \subseteq \mathcal{X}$

How to solve sequential decision problems with a choice function?

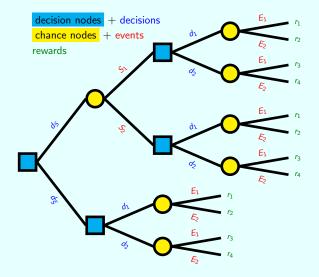


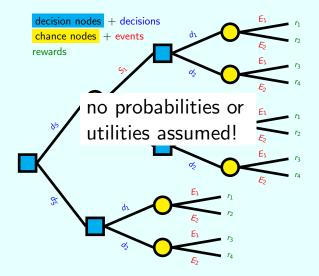


Troffaes, Huntley, Shirota (Durham)



Troffaes, Huntley, Shirota (Durham)



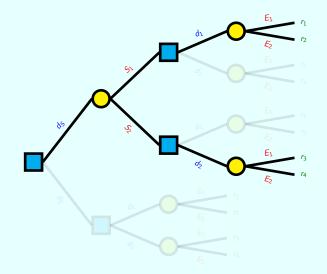


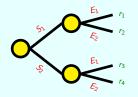
Decision Trees: Normal Form Decisions

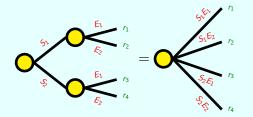
Definition

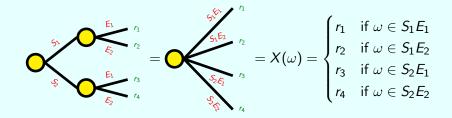
A normal form decision fixes at every decision node exactly one decision.

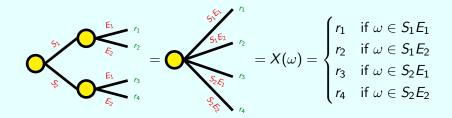
Decision Trees: Normal Form Decisions











Observation

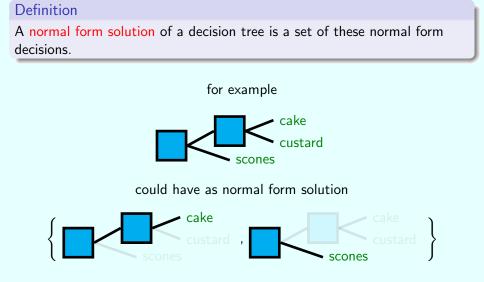
Every normal form decision induces a gamble.

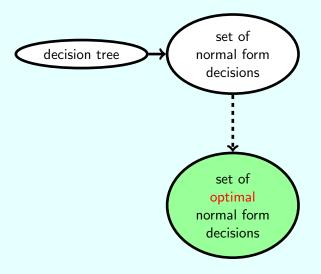
Decision Trees: Normal Form Solution

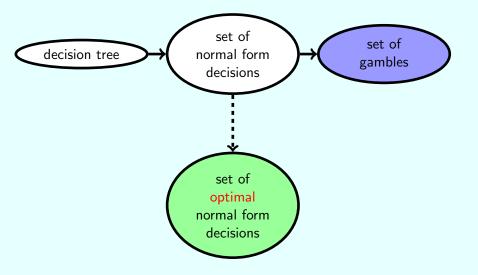
Definition

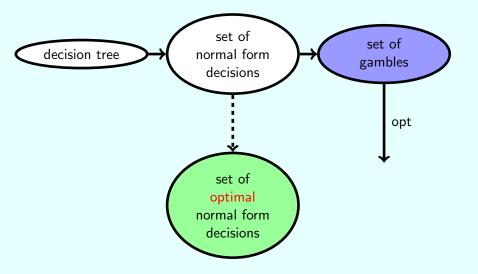
A normal form solution of a decision tree is a set of these normal form decisions.

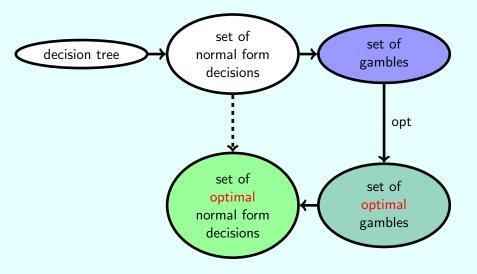
Decision Trees: Normal Form Solution



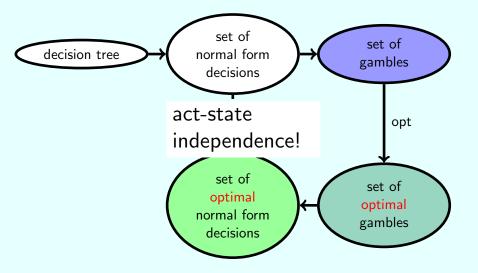








Decision Trees: Normal Form Solution Induced By opt



Decision Trees: Normal Form Solution Induced By opt

If we have a choice function opt then we can in principle solve arbitrary decision trees!

Outline

- Problem Description
- Gambles and Choice Functions
- Decision Trees

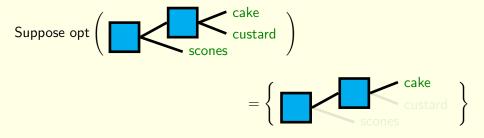
2 Factuality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

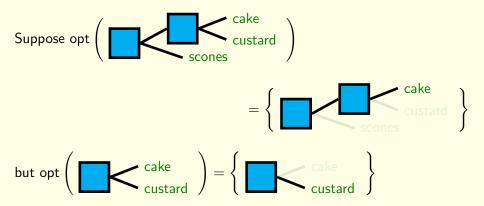
Locality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

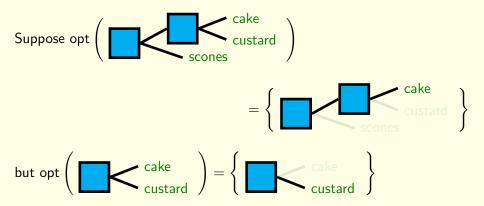
Factuality: A Counterfactual Example



Factuality: A Counterfactual Example



Factuality: A Counterfactual Example



The choice between cake and custard depends on the tree in which the decision is embedded.

Troffaes, Huntley, Shirota (Durham)

Factuality: Definition

Definition

opt is called factual whenever for every decision tree

restriction(opt(tree)) = opt(restriction(tree))

whenever restriction(tree)'s root node is in opt(tree).

In bargaining theory this principle is called subgame perfection.

Factuality Theorem

Theorem

opt is factual if and only if it satisfies:

• Conditioning property. If $\{X, Y\} \subseteq \mathcal{X}$ and AX = AY, then

$$X \in \operatorname{opt}(\mathcal{X}|A) \iff Y \in \operatorname{opt}(\mathcal{X}|A).$$

• Intersection property. If $\mathcal{Y} \subseteq \mathcal{X}$ and $opt(\mathcal{X}|A) \cap \mathcal{Y} \neq \emptyset$, then

$$\mathsf{opt}(\mathcal{Y}|A) = \mathsf{opt}(\mathcal{X}|A) \cap \mathcal{Y}.$$

• Mixture property.

$$\mathsf{opt}(A\mathcal{X}\oplus\overline{A}Z|B)=A\,\mathsf{opt}(\mathcal{X}|A\cap B)\oplus\overline{A}Z.$$

Note: some technical details omitted.

Factuality: No Imprecision

Total Preorder Theorem

The intersection property is equivalent to:

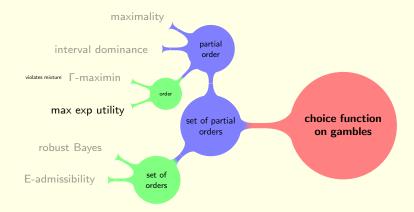
Total preorder property. For every event A ≠ Ø, there is a total preorder ≿_A on gambles such that

$$\mathsf{opt}(\mathcal{X}|A) = \max_{\succeq_A}(\mathcal{X})$$

So it is impossible to be at the same time

- factual, and
- optimal with respect a non-total preference ordering (such as for instance a partial preference ordering)

Factuality: What Choice Functions are Factual?



Factuality: What Can Be Done?

- Some types of counterfactuality may not be so bad, for instance those where backward induction still works (such as maximality and E-admissibility).
- Restrict type of decision trees that you are interested in: there are sequential decision processes where factuality can be obtained under substantially weaker assumptions.

Outline

Introduction

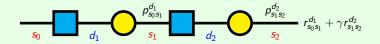
- Problem Description
- Gambles and Choice Functions
- Decision Trees

2 Factuality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

3 Locality

- Definition
- Necessary and Sufficient Conditions
- Implications and Examples

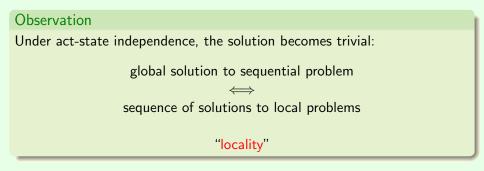


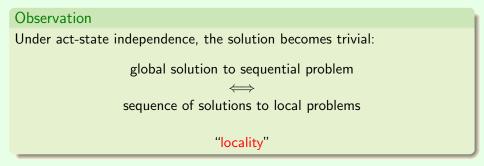
Solution for an *n*-stage process:

$$V_{n+1}^{n}(s) = 0$$
 $V_{k+1}^{n}(s) = \max_{d} \sum_{t} p_{st}^{d}(r_{st}^{d} + \gamma V_{k}^{n}(t))$

Under act-state independence, $p_{st}^d = p_{st}$, and so:

$$V_{n+1}^n(s) = 0$$
 $V_{k+1}^n(s) = \left(\max_d \sum_t p_{st} r_{st}^d\right) + \gamma \sum_t p_{st} V_k^n(t)$





Under what conditions on opt do we have locality?

Locality: Sequential Decision Process on S_0, \ldots, S_n

- states S_0, \ldots, S_n : sequence of random variables
- history $h_k = (s_0, \ldots, s_k)$: sequence of observed states
- decisions and local rewards
 - observe $s_0 \in S_0$,
 - pick $d_1 \in D_1$, see $S_1 = s_1$, get $r_1(s_0d_1s_1) = r_1(h_0d_1s_1)$,
 - ▶ pick $d_2 \in D_2$, see $S_2 = s_2$, get $r_2(s_0s_1d_2s_2) = r_2(h_1d_2s_2)$, ▶ ...
 - pick $d_n \in D_n$, see $S_n = s_n$, get $r_n(h_{n-1}d_ns_n)$.
- + operator on \mathcal{R} with 0: r + 0 = r
- combined reward (evaluate from right to left)

$$r_1(h_0d_1s_1) + r_2(h_1d_2s_2) + \cdots + r_n(h_{n-1}d_ns_n)$$

Locality: Policies

Assume $s_0 d_1 s_1 \dots d_{k-1} s_{k-1}$ has occurred then a normal form decision, or policy π_k^n , consists of

- a decision $d_k \in D_k$,
- a decision function $d_{k+1}(s_k) \in D_{k+1}$,
- . . .
- a decision function $d_n(s_k \dots s_{n-1}) \in D_n$.

Definition

Set of all policies for an n-stage process at the k-th stage:

$$\Pi_k^n = D_k \times D_{k+1}^{S_k} \times \cdots \times D_n^{S_k \times \cdots \times S_{n-1}}$$

Locality: Gambles and Optimality

Definition

Each policy $\pi_k^n = \prod_k^n$ incurs a gamble $X_k^n(h_{k-1}, \pi_k^n)$.

Definition

The set of all these gambles is

$$\mathcal{X}_k^n(h_{k-1}) = \{X(h_{k-1}, \pi_k^n) \colon \pi_k^n \in \Pi_k^n\}$$

Definition

Set of all optimal policies is

$$\Pi_{k}^{n}(h_{k-1}) = \{\pi_{k}^{n} \in \Pi_{k}^{n} \colon X_{k}^{n}(h_{k-1},\pi_{k}^{n}) \in \mathsf{opt}(\mathcal{X}_{k}^{n}(h_{k-1})|h_{k-1})\}$$

Definition

opt is said to satisfy locality on S_0, \ldots, S_n whenever for every sequential decision process on S_0, \ldots, S_n and every $1 \le k \le n$:

$$\Pi_k^n(\cdot) = \Pi_k^k(\cdot) \times \Pi_{k+1}^{k+1}(\cdot) \times \cdots \times \Pi_n^n(\cdot)$$

Definition

Definition

opt
$$\left(\begin{array}{c|c} & & & \\ \hline s_0 & & \\ \hline d_1 & & \\ \hline s_1 & & \\ \hline d_2 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_1 & & \\ \hline s_2 & & \\ \hline s_2$$

Definition

$$\operatorname{opt}\left(\begin{array}{c|c} & & & \\ \hline & & \\ s_0 \end{array} \xrightarrow{f_1(s_0d_1s_1) +} \\ s_1 \end{array} \xrightarrow{f_2(s_0s_1d_2s_2)} \\ s_0 \end{array}\right)$$
$$= \operatorname{opt}\left(\begin{array}{c|c} & & \\ \hline & & \\ s_0 \end{array} \xrightarrow{f_1(s_0d_1s_1)} \\ s_1 \end{array} \xrightarrow{f_1(s_0d_1s_1)} \\ s_0 \end{array}\right)$$

Definition

$$\operatorname{opt}\left(\begin{array}{c|c} & & & & \\ \hline s_0 & & & \\ \hline s_1 & & & \\ \hline s_1 & & & \\ \hline s_2 & & \\ \hline s_1 & \\$$

Locality Theorem

Theorem

opt satisfies locality on S_0, \ldots, S_n if and only if it satisfies:

Sequential distributivity. For any 1 ≤ k < n, any value h_{k-1} of H_{k-1}, all finite sets of gambles X on S_k, all finite sets of gambles Y(s_k) on F_{k+1} (one such set for each s_k ∈ S_k), and all X ∈ X and Y(s_k) ∈ Y(s_k):

$$X + \bigoplus_{s_k} E_{s_k} Y(s_k) \in \operatorname{opt} \left(\mathcal{X} + \bigoplus_{s_k} E_{s_k} \mathcal{Y}(s_k) \Big| h_{k-1} \right)$$

 \longleftrightarrow
 $X \in \operatorname{opt}(\mathcal{X}|h_{k-1}) \text{ and } Y(s_k) \in \operatorname{opt}(\mathcal{Y}(s_k)|h_{k-1}s_k) \text{ for all } s_k.$

Locality: Maximality

Proposition

Maximality with respect to \underline{P} satisfies sequential distributivity (and hence, locality) on S_0, \ldots, S_n , if and only if for all $1 \le k < n$, all $h_{k-1} \in H_{k-1} = S_0 \times \cdots \times S_{k-1}$, all $s_k \in S_k$, and all gambles Z on $F_k = S_k \times \cdots \times S_n$,

$$\underline{P}(E_{s_k}|h_{k-1}) > 0$$

and

$$\underline{P}(Z|h_{k-1}) = \underline{P}(\underline{P}(Z|h_{k-1}S_k)|h_{k-1}).$$

strictly positive transition probabilities

marginal extension

Locality: E-admissibility

Proposition

E-admissibility with respect to <u>P</u> satisfies sequential distributivity (and hence, locality) on S_0, \ldots, S_n , if and only if for all $1 \le k < n$, all $h_{k-1} \in H_{k-1} = S_0 \times \cdots \times S_{k-1}$, all $s_k \in S_k$, and all gambles Z on $F_k = S_k \times \cdots \times S_n$,

$$\underline{P}(E_{s_k}|h_{k-1}) > 0$$

and

$$\underline{P}(Z|h_{k-1}) = \underline{P}(\underline{P}(Z|h_{k-1}S_k)|h_{k-1}).$$

strictly positive transition probabilities

marginal extension

Locality: **Γ**-maximin

Locality for $\Gamma\text{-maximin}$ fails under these conditions. . . However:

Locality: *C*-maximin

Locality for $\Gamma\text{-maximin}$ fails under these conditions. . . However:

Observation

Globally optimal solution could of course still be obtained by non-local means (i.e. backward induction á la Satia and Lave).

Locality: *C*-maximin

Locality for $\Gamma\text{-maximin}$ fails under these conditions. . . However:

Observation

Globally optimal solution could of course still be obtained by non-local means (i.e. backward induction á la Satia and Lave).

Observation

Any Γ -maximin solution obtained locally will be globally optimal with respect to maximality.

- Factuality and locality provide rationality arguments for
 - total preference orderings: say no to imprecision
 - marginal extension
 - strictly positive transition lower probabilities

(although some of these may be stronger than you'd like!)

- Factuality and locality provide rationality arguments for
 - total preference orderings: say no to imprecision
 - marginal extension
 - strictly positive transition lower probabilities

(although some of these may be stronger than you'd like!)

- Locality can be satisfied for non-total orderings such as
 - maximality
 - E-admissibility

- Factuality and locality provide rationality arguments for
 - total preference orderings: say no to imprecision
 - marginal extension
 - strictly positive transition lower probabilities

(although some of these may be stronger than you'd like!)

- Locality can be satisfied for non-total orderings such as
 - maximality
 - E-admissibility
- Local Γ-maximin
 - may not be global Γ-maximin!
 - but it is not entirely stupid either

- Factuality and locality provide rationality arguments for
 - total preference orderings: say no to imprecision
 - marginal extension
 - strictly positive transition lower probabilities

(although some of these may be stronger than you'd like!)

- Locality can be satisfied for non-total orderings such as
 - maximality
 - E-admissibility
- Local Γ-maximin
 - may not be global Γ-maximin!
 - but it is not entirely stupid either

Challenges:

- is the definition of factuality too strong?
- how to accomodate act-state dependence?!

Thanks for your attention!

questions? comments? discussion?