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Markov chains

A (discrete time) Markov chain is a random process with the
Markov property...

...which means that future states only depend on the present
state and not on the past states.

This dependence is expressed through transition probabilities:

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn+1 = j |Xn = i) = pnij

for every n ∈ N.

The knowledge about the �rst state is given by initial
probability

P(X0 = j) = qj .

�kulj Distances between probability measures and coe�cients of ergodicity for imprecise Markov chains



Imprecise Markov chains
Coe�cients of ergodicity for imprecise Markov chains
Other coe�cients of ergodicity and open questions

Introduction
Representation with sets of probabilities

Imprecise Markov chain

A Markov chain has many parameters which may not be
known precisely.

An imprecise Markov chain is a Markov chain where the
imprecise knowledge of parameters is built into the model...
...and re�ected in the results:

probabilities of states at future steps;

long term distributions.
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Representation with sets of probabilities

The uncertainty of parameters can be expressed through sets
of probabilities:

instead of single precisely known initial and transition

probabilities we take sets of possible candidates.

LetMn be the set of possible distributions at step n and P
the set of possible transition matrices.

The following relation must hold:

Mn+1 =Mn · P.

Another important question is whether the sets converge to
some limit setM∞ and what can we say about this
convergence.
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Convexity of the setsMn

The setsM0 and P are usually assumed to be convex.

Mn, for n > 0, are not necessarily convex any more.

What are su�cient conditions for convexity?

Answer: Rows must be separately speci�ed.
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Separately speci�ed rows

Let P be a convex set of transition matrices.

Pi the set of all possible i-th rows. It is a convex set.

De�nition

P has separately speci�ed rows if the choice of i-th row is
independent of the choice of other rows.

Theorem

IfM0 is convex and P is convex with separately speci�ed rows
then allMn are convex.
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Representation with expectation operators

Convex sets of probabilities can equivalently be expressed
through (lower) expectation operators

Pn[f ] = min
p∈Mn

Ep[f ],

where f is a real valued map on the set of states.

Convex sets of transition matrices can be represented through
(lower) transition operators:

T [f ] =

 T 1[f ]
...

Tm[f ]

 .
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Coe�cients of ergodicity

Coe�cients of ergodicity or contraction coe�cients measure
the rate of convergence of Markov chains.

Let p be a stochastic matrix without zero columns.
The value τ(p) of a coe�cient of ergodicity satis�es:

0 ≤ τ(p) ≤ 1;

τ(p1p2) ≤ τ(p1)τ(p2);
τ(p) = 0 i� p has rank 1: p = 1v for some vector v .

Clearly: τ(p) < 1 implies that powers pn converge to a matrix
with rank 1, which is equivalent to unique convergence of the
corresponding Markov chain.
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Calculation and generalisation

A coe�cient of ergodicity can be calculated as

τ(p) = max
i ,j

d(pi , pj),

where pi and pj are the i-th and the j-th row of p; and

d(pi , pj) = max
A⊆Ω
|pi (A)− pj(A)|.

We can generalise this to imprecise Markov chains if the
distance function d is generalised to imprecise probabilities.

This can be done in di�erent ways with di�erent implications
to imprecise Markov chains.
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Hausdor� metric

The Hausdor� metric makes the set of compact non-empty
subsets of a metric space a metric space.

It is de�ned by:

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)

}
.

It can be used to measure distances between closed sets of
probability distributions on �nite measurable sets.

The Hausdor� distance is equal to 0 i� the sets are equal.
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Distances between expectation operators

Using lower expectation operators there is another way to measure
the distance between imprecise probabilities:

d(P,P ′) = max
0≤f≤1

|P(f )− P ′(f )|.

Theorem (�kulj, Hable (2009))

LetM1 andM2 be closed convex sets of probabilities and let P1

and P2 be their lower expectation operators.Then:

d(P1,P2) = dH(M1,M2).
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Maximal distance between imprecise probabilities

Sometimes we need the maximal distance between sets of
probabilities:

max
p1∈M1
p2∈M2

d(p1, p2)

Theorem

max
A⊂Ω

max{P1(1A)− P2(1A),P2(1A)− P1(1A)}.
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Uniform coe�cient of ergodicity

Let P be a set of transition matrices.
Let Pi denote it's i-th row and T i and T i be its upper and
lower expectation operators.
The uniform coe�cient of ergodicity is de�ned as

τ(P) = sup
p∈P

τ(p)

by Hart�el (1998).
Using a previous result we can see that

τ(P) = max
1≤i ,j≤m

max
A⊂Ω

T i (1A)− T j(1A),

where T i and T j are lower and upper expectation operators
corresponding to Pi and Pj respectively.
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Convergence

A set P of transition matrices such that τ(P r ) < 1, for some
r > 0, is called product scrambling.

Theorem (Hart�el (1998))

Let P be product scrambling. Then

dH(M0Pn,M∞) ≤ Kβh

for some constants K and β; andM∞ is a unique compact set of
probabilities, independent fromM0.
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Weak coe�cient of ergodicity

The previous requirements are clearly su�cient for
convergence, but too strong (this follows from the results of de
Cooman, Hermans, Quaeghebeur (2009)).

We need another coe�cient of ergodicity to describe this type
of convergence.

Instead of taking maximal possible distances between rows of
imprecise transition matrices, we take a distance that re�ects
only the di�erence between the rows.

Hausdor� distance seems a good candidate.
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De�nition of the weak coe�cient of ergodicity

We de�ne the weak coe�cient of ergodicity by means of lower
expectation operators.

Let T be a lower transition operator with rows T i .

Then we de�ne the weak coe�cient of ergodicity as

max
i ,j

d(T i ,T j),

which is equal to the Hausdor� distances between the
corresponding sets.
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Convergence

A lower transition operator T such that ρ(T r ) < 1, for some r > 0,
is called weakly product scrambling.

Theorem (�kulj, Hable (2009))

Let T be weakly product scrambling. Then

d(P0T
h,P∞) ≤ Kβh

for some constants K and β; and P∞ is a unique lower expectation
operator, independent from P0.
Moreover, T being weakly product scrambling is equivalent to
unique convergence.
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Markov chains with absorbing states

A Markov chain with the transition matrix of the form[
1 0

p Q

]
,

with p 6= 0 and Q satis�es a regularity assumption is
considered (Darroch and Seneta (1965)).
Crossman, Coolen-Schrijner and Coolen (2009) study this
problem with imprecise probabilities.
The unique limit distribution is equal to (1, 0).
If conditioned on non-absorption, the conditional distributions
converge to a unique limit distribution.
Crossman and �kulj (2009) generalise this convegence result
to imprecise probabilities.
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Another distance function

A new distance measure between probability vectors was used
in the proof.
Let (u−1,u) and (v−1, v) be probability vectors with u, v > 0.
We de�ne:

d1(u, v) =
αu,v − αu,v

α
u,v

where
α
u,v = min

i≥0

ui

vi
and αu,v = max

i≥0

ui

vi
.

Clearly 1
1−u−1u = 1

1−v−1 v i� d1(u, v) = 0.
A similar distance function is used in Seneta's book (2006):

d2(u, v) = ln
αu,v

α
u,v

.

�kulj Distances between probability measures and coe�cients of ergodicity for imprecise Markov chains



Imprecise Markov chains
Coe�cients of ergodicity for imprecise Markov chains
Other coe�cients of ergodicity and open questions

Markov chains with absorbing states

Birkho�'s coe�cient of ergodicity

Birkho�'s coe�cient of ergodicity is de�ned as:

1−
√
φ(T )

1 +
√
φ(T )

where
φ(T ) = min

i ,j
αTi ,Tj

αTj ,Ti
.

and measures the rate of convergence with respect to the distance
d2.
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Generalisation to imprecise probabilities

The distance functions d1 or d2 can be generalised to sets of
probabilities by a construction similar to the de�nition of the
Hausdor� distance.

Questions: What would be the corresponding distance function
between lower or upper expectation operators that would
correspond to these distances between sets of probabilities?

How could the corresponding coe�cients of ergodicity for the
imprecise case be de�ned?
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