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Issue

Consider slender structure

modelled by single-degree-of-freedom (SDOF) oscillator with mass
ms , viscous damping parameter cs and stiffness ks
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weak damping

ground excitation xg (earthquake)
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Issue

Consider slender structure

modelled by single-degree-of-freedom (SDOF) oscillator with mass
ms , viscous damping parameter cs and stiffness ks

weak damping

ground excitation xg (earthquake)

leads to structural vibrations with large amplitudes (displacement xs)
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Issue

Tuned Mass Damper (TMD)

modelled by single-degree-of-freedom (SDOF) oscillator with mass
md , viscous damping parameter cd and stiffness kd
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Issue

Tuned Mass Damper (TMD)

modelled by single-degree-of-freedom (SDOF) oscillator with mass
md , viscous damping parameter cd and stiffness kd

kinetic energy is transferred from structure to TMD
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kinetic energy is transferred from structure to TMD

optimal tuning of TMD depending on type of excitation
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Issue

Tuned Mass Damper (TMD)

modelled by single-degree-of-freedom (SDOF) oscillator with mass
md , viscous damping parameter cd and stiffness kd

kinetic energy is transferred from structure to TMD

optimal tuning of TMD depending on type of excitation

possible in theory, very difficult in practice → parameter uncertainty
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Issue

Combined structure-TMD system

modelled by two-degrees-of-freedom oscillator
→ system of ODEs
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Issue

Combined structure-TMD system

modelled by two-degrees-of-freedom oscillator
→ system of ODEs

modelling ground acceleration ẍg by white noise
→ system of stochastic differential equations

xg(t)

md

ms

cs
ks

kd

cd
xd (t)

xs (t)

Bernhard Schmelzer (Innsbruck) Set-valued vibration analysis September 2009 4 / 22



Issue

Combined structure-TMD system

modelled by two-degrees-of-freedom oscillator
→ system of ODEs

modelling ground acceleration ẍg by white noise
→ system of stochastic differential equations

modelling parameter uncertainty by random sets
→ set-valued processes as output
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Stochastic differential equations

dxt = f (t, xt)dt + G (t, xt)dwt

with

t0 ≤ t ≤ t < ∞,

{wt}t≥t0 being an m-dimensional Wiener process on a probability
space (Ωw ,Σw ,Pw ),

initial value xt0 and coefficients f and G :

xt0 : Ωw → R
d , ωw 7→ xt0(ωw ),

f : [t0, t] × R
d → R

d , (t, x) 7→ f (t, x),
G : [t0, t] × R

d → R
d×m, (t, x) 7→ G (t, x).
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Stochastic differential equations

dxt,a = f (t, a, xt,a)dt + G (t, a, xt,a)dwt

with uncertain parameters a ∈ A ⊆ R
p and

t0 ≤ t ≤ t < ∞,

{wt}t≥t0 being an m-dimensional Wiener process on a probability
space (Ωw ,Σw ,Pw ),

initial value xt0 and coefficients f and G :

xt0 : A × Ωw → R
d , (a, ωw ) 7→ xt0,a(ωw ),

f : [t0, t] × A × R
d → R

d , (t, a, x) 7→ f (t, a, x),
G : [t0, t] × A × R

d → R
d×m, (t, a, x) 7→ G (t, a, x).
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Solution processes

Assume that for each a ∈ A the conditions for the existence of a
unique solution {xt,a}t∈[t0,t] are fulfilled.
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Solution processes

Assume that for each a ∈ A the conditions for the existence of a
unique solution {xt,a}t∈[t0,t] are fulfilled.

This leads to the map

x : [t0, t] × A × Ωw → R
d , (t, a, ωw ) 7→ xt,a(ωw )

which is a stochastic process on [t0, t] × A and (Ωw ,Σw ,Pw ).
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Solution processes

Assume that for each a ∈ A the conditions for the existence of a
unique solution {xt,a}t∈[t0,t] are fulfilled.

This leads to the map

x : [t0, t] × A × Ωw → R
d , (t, a, ωw ) 7→ xt,a(ωw )

which is a stochastic process on [t0, t] × A and (Ωw ,Σw ,Pw ).

Under certain conditions it can be shown that x has a version

– whose sample paths are continuous on [t0, t] × A,

– which is B([t0, t]) ⊗ B(A) ⊗ Σw -measurable.
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Parameter uncertainty

To model the uncertainty of a we use a random compact set

A : ΩA → K′(A)

– on a probability space (ΩA,ΣA,PA)

– with non-empty compact values being subsets of A

Bernhard Schmelzer (Innsbruck) Set-valued vibration analysis September 2009 7 / 22



Parameter uncertainty

To model the uncertainty of a we use a random compact set

A : ΩA → K′(A)

– on a probability space (ΩA,ΣA,PA)

– with non-empty compact values being subsets of A

Defining measurability condition: for all B ∈ B(Rd) it holds that

A−(B) = {ωA : A(ωA) ∩ B 6= ∅} ∈ ΣA.
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Set-valued solution process

Define the set-valued map

X : (t, ω) 7→ {xt,a(ωw ) : a ∈ A(ωA)}

where (t, ω) ∈ [t0, t] × Ω and Ω denotes the product space

(Ω,Σ,P) = (ΩA × Ωw ,ΣA ⊗ Σw ,PA ⊗ Pw ).
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Set-valued solution process

Define the set-valued map

X : (t, ω) 7→ {xt,a(ωw ) : a ∈ A(ωA)}

where (t, ω) ∈ [t0, t] × Ω and Ω denotes the product space

(Ω,Σ,P) = (ΩA × Ωw ,ΣA ⊗ Σw ,PA ⊗ Pw ).

Is this a set-valued process (measurability)?

What are its properties?
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Set-valued solution process

X is a set-valued process on [t0, t] and the completed probability

space (Ω,Σ
P
,P) with values in K′(Rd), i.e., for all t ∈ [t0, t] and

B ∈ B(Rd) it holds that

X−
t (B) = {ω : Xt(ω) ∩ B 6= ∅} ∈ Σ

P
,
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X−
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P
,

all sample functions of X are continuous with respect to the
Hausdorff-metric on K′(Rd),
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Set-valued solution process

X is a set-valued process on [t0, t] and the completed probability

space (Ω,Σ
P
,P) with values in K′(Rd), i.e., for all t ∈ [t0, t] and

B ∈ B(Rd) it holds that

X−
t (B) = {ω : Xt(ω) ∩ B 6= ∅} ∈ Σ

P
,

all sample functions of X are continuous with respect to the
Hausdorff-metric on K′(Rd),

X is measurable with respect to the product-σ-algebra

B([t0, t]) ⊗ Σ
P
.
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Picture of a sample path
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blue lines: boundaries of sample path of set-valued process X
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Picture of a sample path
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blue lines: boundaries of sample path of set-valued process X

red line: sample path of a selection ξ
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First entrance and inclusion times
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When does ξ enter B for the first time?
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When does ξ enter B for the first time?
→ first entrance time τB

ξ : ω 7→ inf{t : ξt(ω) ∈ B}
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When does X enter B for the first time?
→ first entrance time τB : ω 7→ inf{t : X t(ω) ∩ B 6= ∅}
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First entrance and inclusion times
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When is X contained in B for the first time?
→ first inclusion time τB : ω 7→ inf{t : X t(ω) ⊆ B}
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First entrance and inclusion times

Under certain conditions τ and τ

are random variables on (Ω,Σ,P),
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are random variables on (Ω,Σ,P),
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First entrance and inclusion times

Under certain conditions τ and τ

are random variables on (Ω,Σ,P),

are even stopping times with respect to an appropriate filtration,

can be attained by first entrance times of selection processes of X .
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TMD - Mechanical model
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TMD - Mechanical model

xg(t)
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xd (t)

xs (t)

Defining

mass ratio: µ = md

ms
≪ 1

natural circular frequencies: ωs =
√

ks

ms
, ωd =

√

kd

md

non-dimensional damping coefficients: ζs = cs

2ωsms
, ζd = cd

2ωdmd
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TMD - Mechanical model

The coupled equations of motion can be written as a 4-dimensional linear
system of SDEs of first order:

dyt = M yt dt + G dwt , y0 = 0

where

yt =









xs

xd

ẋs

ẋd









, G =









0
0
−1
−1









M =









0 0 1 0
0 0 0 1

−ω2
s − ω2

dµ ω2
dµ −2ζsωs − 2ζdωdµ 2ζdωdµ

ω2
d −ω2

d 2ζdωd −2ζdωd
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TMD - Parameter uncertainty

fixed parameters: µ, ζs and ωs = 2π/T for different periods T
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TMD - Parameter uncertainty

fixed parameters: µ, ζs and ωs = 2π/T for different periods T

uncertain parameters: a = (ζd , ωd)

optimal values a = (ζd , ωd) under white noise excitation:

ζd =

√

µ(1 − µ/4)

4(1 + µ)(1 − µ/2)
, ωd =

√

1 − µ/2

1 + µ
· ωs
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TMD - Parameter uncertainty

fixed parameters: µ, ζs and ωs = 2π/T for different periods T

uncertain parameters: a = (ζd , ωd)

optimal values a = (ζd , ωd) under white noise excitation:

ζd =

√

µ(1 − µ/4)

4(1 + µ)(1 − µ/2)
, ωd =

√

1 − µ/2

1 + µ
· ωs

Assessment for both parameters: The probability that the parameter
differs from its optimal value by more than 40% is at most 0.01.

Pi (|ai − ai | > 0.4ai) ≤ 0.01
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

Tchebychev’s inequality: P(|ai − E(ai )| > c) ≤ V(ai )
c2
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

Tchebychev’s inequality: P(|ai − E(ai )| > c) ≤ V(ai )
c2

implies random set

Ai : (0, 1] → K′(R), c 7→

[
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

Tchebychev’s inequality: P(|ai − E(ai )| > c) ≤ V(ai )
c2

implies random set

Ai : (0, 1] → K′(R), c 7→

[

E(ai) −

√

V(ai )

c
,E(ai ) −

√

V(ai )

c

]

Random sets for a1 = ζd and a2 = ωd are
combined by random set independence to
one random set A on ΩA = (0, 1]2 with
values in K′(R2)
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TMD - Output: displacement and acceleration

Xs (T = 1) Ẍs (T = 1)
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TMD - Output: first entrance and inclusion times

b = 0.5 · E(supt∈[t0,t] |x̃t |)
B = [b,∞)

CDFs of τB , τB and τB
x·,a

P t(B) = P(Xt ∩ B 6= ∅)

P t(B) = P(Xt ⊆ B)

Pa,t(B) = P(xt,a ∈ B)
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TMD - Output: reduction of displacement

Reduction of displacement compared to displacement x̃s of structure
without TMD:
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TMD - Output: reduction of displacement

Reduction of displacement compared to displacement x̃s of structure
without TMD:

peak displacement: r∞,a(ωw ) =
supt∈[0,t] |xs,t,a(ωw )|

supt∈[0,t] |x̃s,t(ωw )|
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TMD - Output: reduction of displacement

Reduction of displacement compared to displacement x̃s of structure
without TMD:

peak displacement: r∞,a(ωw ) =
supt∈[0,t] |xs,t,a(ωw )|

supt∈[0,t] |x̃s,t(ωw )|

mean square reduction: r2,a(ωw ) =

√

∫ t

0 |xs,t,a(ωw )|2dt
∫ t

0 |x̃s,t(ωw )|2dt
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TMD - Output: reduction of displacement

Reduction of displacement compared to displacement x̃s of structure
without TMD:

peak displacement: r∞,a(ωw ) =
supt∈[0,t] |xs,t,a(ωw )|

supt∈[0,t] |x̃s,t(ωw )|

mean square reduction: r2,a(ωw ) =

√

∫ t

0 |xs,t,a(ωw )|2dt
∫ t

0 |x̃s,t(ωw )|2dt

two possible set-valued analogues:

R
(1)
∗ (ω) = {r∗,a(ωw ) : a ∈ A(ωA)}

R
(2)
∗ (ω) = [R∗(ω),R∗(ω)]

where R∗ and R∗ are computed from the boundaries of |Xs |
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Reduction of displacement compared to displacement x̃s of structure
without TMD:

peak displacement: r∞,a(ωw ) =
supt∈[0,t] |xs,t,a(ωw )|

supt∈[0,t] |x̃s,t(ωw )|

mean square reduction: r2,a(ωw ) =

√

∫ t

0 |xs,t,a(ωw )|2dt
∫ t

0 |x̃s,t(ωw )|2dt

two possible set-valued analogues:

R
(1)
∗ (ω) = {r∗,a(ωw ) : a ∈ A(ωA)}

R
(2)
∗ (ω) = [R∗(ω),R∗(ω)]

where R∗ and R∗ are computed from the boundaries of |Xs |

it holds that R
(1)
∗ ⊆ R

(2)
∗
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TMD - Output: reduction of displacement
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