Set-valued stochastic processes in vibration analysis

Bernhard Schmelzer

joint work with Christoph Adam and Michael Oberguggenberger

Leopold-Franzens-Universität Innsbruck
September 2009

Issue

Consider slender structure

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{s}, viscous damping parameter c_{s} and stiffness k_{s}

Issue

Consider slender structure

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{s}, viscous damping parameter c_{s} and stiffness k_{s}
- weak damping

Issue

Consider slender structure

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{s}, viscous damping parameter c_{s} and stiffness k_{s}
- weak damping
- ground excitation x_{g} (earthquake)

Issue

Consider slender structure

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{s}, viscous damping parameter c_{s} and stiffness k_{s}
- weak damping
- ground excitation x_{g} (earthquake)
- leads to structural vibrations with large amplitudes (displacement x_{s})

Issue

Tuned Mass Damper (TMD)

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{d}, viscous damping parameter c_{d} and stiffness k_{d}

Issue

Tuned Mass Damper (TMD)

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{d}, viscous damping parameter c_{d} and stiffness k_{d}
- kinetic energy is transferred from structure to TMD

Issue

Tuned Mass Damper (TMD)

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{d}, viscous damping parameter c_{d} and stiffness k_{d}
- kinetic energy is transferred from structure to TMD
- optimal tuning of TMD depending on type of excitation

Issue

Tuned Mass Damper (TMD)

- modelled by single-degree-of-freedom (SDOF) oscillator with mass m_{d}, viscous damping parameter c_{d} and stiffness k_{d}
- kinetic energy is transferred from structure to TMD
- optimal tuning of TMD depending on type of excitation
- possible in theory, very difficult in practice \rightarrow parameter uncertainty

Issue

Combined structure-TMD system

- modelled by two-degrees-of-freedom oscillator \rightarrow system of ODEs

Issue

Combined structure-TMD system

- modelled by two-degrees-of-freedom oscillator
\rightarrow system of ODEs
- modelling ground acceleration \ddot{x}_{g} by white noise \rightarrow system of stochastic differential equations

Issue

Combined structure-TMD system

- modelled by two-degrees-of-freedom oscillator
\rightarrow system of ODEs
- modelling ground acceleration \ddot{x}_{g} by white noise \rightarrow system of stochastic differential equations
- modelling parameter uncertainty by random sets \rightarrow set-valued processes as output

Stochastic differential equations

$$
d x_{t}=f\left(t, x_{t}\right) d t+G\left(t, x_{t}\right) d w_{t}
$$

with

- $t_{0} \leq t \leq \bar{t}<\infty$,
- $\left\{w_{t}\right\}_{t \geq t_{0}}$ being an m-dimensional Wiener process on a probability space $\left(\Omega_{w}, \Sigma_{w}, P_{w}\right)$,
- initial value $x_{t_{0}}$ and coefficients f and G :

$$
\begin{array}{rll}
x_{t_{0}}: & \Omega_{w} \rightarrow \mathbb{R}^{d}, & \omega_{w} \mapsto x_{t_{0}}\left(\omega_{w}\right) \\
f: & {\left[t_{0}, \bar{t}\right] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d},} & (t, x) \mapsto f(t, x), \\
G: & {\left[t_{0}, \bar{t}\right] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times m},} & (t, x) \mapsto G(t, x)
\end{array}
$$

Stochastic differential equations

$$
d x_{t, a}=f\left(t, a, x_{t, a}\right) d t+G\left(t, a, x_{t, a}\right) d w_{t}
$$

with uncertain parameters $a \in \mathbb{A} \subseteq \mathbb{R}^{p}$ and

- $t_{0} \leq t \leq \bar{t}<\infty$,
- $\left\{w_{t}\right\}_{t \geq t_{0}}$ being an m-dimensional Wiener process on a probability space $\left(\Omega_{w}, \Sigma_{w}, P_{w}\right)$,
- initial value $x_{t_{0}}$ and coefficients f and G :

$$
\begin{array}{rll}
x_{t_{0}}: & \mathbb{A} \times \Omega_{w} \rightarrow \mathbb{R}^{d}, & \left(a, \omega_{w}\right) \mapsto x_{t_{0}, a}\left(\omega_{w}\right), \\
f: & {\left[t_{0}, \bar{t}\right] \times \mathbb{A} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d},} & (t, a, x) \mapsto f(t, a, x), \\
G: & {\left[t_{0}, \bar{t}\right] \times \mathbb{A} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times m},} & (t, a, x) \mapsto G(t, a, x) .
\end{array}
$$

Solution processes

- Assume that for each $a \in \mathbb{A}$ the conditions for the existence of a unique solution $\left\{x_{t, a}\right\}_{t \in\left[t_{0}, t\right]}$ are fulfilled.

Solution processes

- Assume that for each $a \in \mathbb{A}$ the conditions for the existence of a unique solution $\left\{x_{t, a}\right\}_{t \in\left[t_{0}, t\right]}$ are fulfilled.
- This leads to the map

$$
x:\left[t_{0}, \bar{t}\right] \times \mathbb{A} \times \Omega_{w} \rightarrow \mathbb{R}^{d},\left(t, a, \omega_{w}\right) \mapsto x_{t, a}\left(\omega_{w}\right)
$$

which is a stochastic process on $\left[t_{0}, \bar{t}\right] \times \mathbb{A}$ and $\left(\Omega_{w}, \Sigma_{w}, P_{w}\right)$.

Solution processes

- Assume that for each $a \in \mathbb{A}$ the conditions for the existence of a unique solution $\left\{x_{t, a}\right\}_{t \in\left[t_{0}, t\right]}$ are fulfilled.
- This leads to the map

$$
x:\left[t_{0}, \bar{t}\right] \times \mathbb{A} \times \Omega_{w} \rightarrow \mathbb{R}^{d},\left(t, a, \omega_{w}\right) \mapsto x_{t, a}\left(\omega_{w}\right)
$$

which is a stochastic process on $\left[t_{0}, \bar{t}\right] \times \mathbb{A}$ and $\left(\Omega_{w}, \Sigma_{w}, P_{w}\right)$.

- Under certain conditions it can be shown that x has a version
- whose sample paths are continuous on $\left[t_{0}, \bar{t}\right] \times \mathbb{A}$,
- which is $\mathcal{B}\left(\left[t_{0}, \bar{t}\right]\right) \otimes \mathcal{B}(\mathbb{A}) \otimes \Sigma_{w}$-measurable.

Parameter uncertainty

- To model the uncertainty of a we use a random compact set

$$
A: \Omega_{\mathbb{A}} \rightarrow \mathcal{K}^{\prime}(\mathbb{A})
$$

- on a probability space $\left(\Omega_{\mathbb{A}}, \Sigma_{\mathbb{A}}, P_{\mathbb{A}}\right)$
- with non-empty compact values being subsets of \mathbb{A}

Parameter uncertainty

- To model the uncertainty of a we use a random compact set

$$
A: \Omega_{\mathbb{A}} \rightarrow \mathcal{K}^{\prime}(\mathbb{A})
$$

- on a probability space $\left(\Omega_{\mathbb{A}}, \Sigma_{\mathbb{A}}, P_{\mathbb{A}}\right)$
- with non-empty compact values being subsets of \mathbb{A}
- Defining measurability condition: for all $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ it holds that

$$
A^{-}(B)=\left\{\omega_{\mathbb{A}}: A\left(\omega_{\mathbb{A}}\right) \cap B \neq \emptyset\right\} \in \Sigma_{\mathbb{A}} .
$$

Set-valued solution process

- Define the set-valued map

$$
X:(t, \omega) \mapsto\left\{x_{t, a}\left(\omega_{w}\right): a \in A\left(\omega_{\mathbb{A}}\right)\right\}
$$

where $(t, \omega) \in\left[t_{0}, \bar{t}\right] \times \Omega$ and Ω denotes the product space

$$
(\Omega, \Sigma, P)=\left(\Omega_{\mathbb{A}} \times \Omega_{w}, \Sigma_{\mathbb{A}} \otimes \Sigma_{w}, P_{\mathbb{A}} \otimes P_{w}\right)
$$

Set-valued solution process

- Define the set-valued map

$$
X:(t, \omega) \mapsto\left\{x_{t, a}\left(\omega_{w}\right): a \in A\left(\omega_{\mathbb{A}}\right)\right\}
$$

where $(t, \omega) \in\left[t_{0}, \bar{t}\right] \times \Omega$ and Ω denotes the product space

$$
(\Omega, \Sigma, P)=\left(\Omega_{\mathbb{A}} \times \Omega_{w}, \Sigma_{\mathbb{A}} \otimes \Sigma_{w}, P_{\mathbb{A}} \otimes P_{w}\right)
$$

- Is this a set-valued process (measurability)?

Set-valued solution process

- Define the set-valued map

$$
X:(t, \omega) \mapsto\left\{x_{t, a}\left(\omega_{w}\right): a \in A\left(\omega_{\mathbb{A}}\right)\right\}
$$

where $(t, \omega) \in\left[t_{0}, \bar{t}\right] \times \Omega$ and Ω denotes the product space

$$
(\Omega, \Sigma, P)=\left(\Omega_{\mathbb{A}} \times \Omega_{w}, \Sigma_{\mathbb{A}} \otimes \Sigma_{w}, P_{\mathbb{A}} \otimes P_{w}\right)
$$

- Is this a set-valued process (measurability)?
- What are its properties?

Set-valued solution process

- X is a set-valued process on $\left[t_{0}, \bar{t}\right]$ and the completed probability space $\left(\Omega, \bar{\Sigma}^{P}, \bar{P}\right)$ with values in $\mathcal{K}^{\prime}\left(\mathbb{R}^{d}\right)$, i.e., for all $t \in\left[t_{0}, \bar{t}\right]$ and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ it holds that

$$
X_{t}^{-}(B)=\left\{\omega: X_{t}(\omega) \cap B \neq \emptyset\right\} \in \bar{\Sigma}^{P}
$$

Set-valued solution process

- X is a set-valued process on $\left[t_{0}, \bar{t}\right]$ and the completed probability space $\left(\Omega, \bar{\Sigma}^{P}, \bar{P}\right)$ with values in $\mathcal{K}^{\prime}\left(\mathbb{R}^{d}\right)$, i.e., for all $t \in\left[t_{0}, \bar{t}\right]$ and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ it holds that

$$
X_{t}^{-}(B)=\left\{\omega: X_{t}(\omega) \cap B \neq \emptyset\right\} \in \bar{\Sigma}^{P}
$$

- all sample functions of X are continuous with respect to the Hausdorff-metric on $\mathcal{K}^{\prime}\left(\mathbb{R}^{d}\right)$,

Set-valued solution process

- X is a set-valued process on $\left[t_{0}, \bar{t}\right]$ and the completed probability space $\left(\Omega, \bar{\Sigma}^{P}, \bar{P}\right)$ with values in $\mathcal{K}^{\prime}\left(\mathbb{R}^{d}\right)$, i.e., for all $t \in\left[t_{0}, \bar{t}\right]$ and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ it holds that

$$
X_{t}^{-}(B)=\left\{\omega: X_{t}(\omega) \cap B \neq \emptyset\right\} \in \bar{\Sigma}^{P}
$$

- all sample functions of X are continuous with respect to the Hausdorff-metric on $\mathcal{K}^{\prime}\left(\mathbb{R}^{d}\right)$,
- X is measurable with respect to the product- σ-algebra $\mathcal{B}\left(\left[t_{0}, \bar{t}\right]\right) \otimes \bar{\Sigma}^{P}$.

Picture of a sample path

Picture of a sample path

- blue lines: boundaries of sample path of set-valued process X

Picture of a sample path

- blue lines: boundaries of sample path of set-valued process X
- red line: sample path of a selection ξ

First entrance and inclusion times

When does ξ enter B for the first time?

First entrance and inclusion times

When does ξ enter B for the first time?
\rightarrow first entrance time $\tau_{\xi}^{B}: \omega \mapsto \inf \left\{t: \xi_{t}(\omega) \in B\right\}$

First entrance and inclusion times

When does X enter B for the first time?

First entrance and inclusion times

When does X enter B for the first time?
\rightarrow first entrance time $\underline{\tau}^{B}: \omega \mapsto \inf \left\{t: X_{t}(\omega) \cap B \neq \emptyset\right\}$

First entrance and inclusion times

When is X contained in B for the first time?

First entrance and inclusion times

When is X contained in B for the first time?
\rightarrow first inclusion time $\bar{\tau}^{B}: \omega \mapsto \inf \left\{t: X_{t}(\omega) \subseteq B\right\}$

First entrance and inclusion times

Under certain conditions $\underline{\tau}$ and $\bar{\tau}$

- are random variables on (Ω, Σ, P),

First entrance and inclusion times

Under certain conditions $\underline{\tau}$ and $\bar{\tau}$

- are random variables on (Ω, Σ, P),
- are even stopping times with respect to an appropriate filtration,

First entrance and inclusion times

Under certain conditions $\underline{\tau}$ and $\bar{\tau}$

- are random variables on (Ω, Σ, P),
- are even stopping times with respect to an appropriate filtration,
- can be attained by first entrance times of selection processes of X.

TMD - Mechanical model

Defining

TMD - Mechanical model

Defining

- mass ratio: $\mu=\frac{m_{d}}{m_{s}} \ll 1$

TMD - Mechanical model

Defining

- mass ratio: $\mu=\frac{m_{d}}{m_{s}} \ll 1$
- natural circular frequencies: $\omega_{s}=\sqrt{\frac{k_{s}}{m_{s}}}, \omega_{d}=\sqrt{\frac{k_{d}}{m_{d}}}$

TMD - Mechanical model

Defining

- mass ratio: $\mu=\frac{m_{d}}{m_{s}} \ll 1$
- natural circular frequencies: $\omega_{s}=\sqrt{\frac{k_{s}}{m_{s}}}, \omega_{d}=\sqrt{\frac{k_{d}}{m_{d}}}$
- non-dimensional damping coefficients: $\zeta_{s}=\frac{c_{s}}{2 \omega_{s} m_{s}}, \zeta_{d}=\frac{c_{d}}{2 \omega_{d} m_{d}}$

TMD - Mechanical model

The coupled equations of motion can be written as a 4-dimensional linear system of SDEs of first order:

$$
d y_{t}=M y_{t} d t+G d w_{t}, \quad y_{0}=0
$$

where

$$
\begin{gathered}
y_{t}=\left(\begin{array}{c}
x_{s} \\
x_{d} \\
\dot{x}_{s} \\
\dot{x}_{d}
\end{array}\right), \quad G=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
-1
\end{array}\right) \\
M=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\omega_{s}^{2}-\omega_{d}^{2} \mu & \omega_{d}^{2} \mu & -2 \zeta_{s} \omega_{s}-2 \zeta_{d} \omega_{d} \mu & 2 \zeta_{d} \omega_{d} \mu \\
\omega_{d}^{2} & -\omega_{d}^{2} & 2 \zeta_{d} \omega_{d} & -2 \zeta_{d} \omega_{d}
\end{array}\right)
\end{gathered}
$$

TMD - Parameter uncertainty

- fixed parameters: μ, ζ_{s} and $\omega_{s}=2 \pi / T$ for different periods T

TMD - Parameter uncertainty

- fixed parameters: μ, ζ_{s} and $\omega_{s}=2 \pi / T$ for different periods T
- uncertain parameters: $a=\left(\zeta_{d}, \omega_{d}\right)$

TMD - Parameter uncertainty

- fixed parameters: μ, ζ_{s} and $\omega_{s}=2 \pi / T$ for different periods T
- uncertain parameters: $a=\left(\zeta_{d}, \omega_{d}\right)$
- optimal values $\bar{a}=\left(\bar{\zeta}_{d}, \bar{\omega}_{d}\right)$ under white noise excitation:

$$
\bar{\zeta}_{d}=\sqrt{\frac{\mu(1-\mu / 4)}{4(1+\mu)(1-\mu / 2)}}, \quad \bar{\omega}_{d}=\frac{\sqrt{1-\mu / 2}}{1+\mu} \cdot \omega_{s}
$$

TMD - Parameter uncertainty

- fixed parameters: μ, ζ_{s} and $\omega_{s}=2 \pi / T$ for different periods T
- uncertain parameters: $a=\left(\zeta_{d}, \omega_{d}\right)$
- optimal values $\bar{a}=\left(\bar{\zeta}_{d}, \bar{\omega}_{d}\right)$ under white noise excitation:

$$
\bar{\zeta}_{d}=\sqrt{\frac{\mu(1-\mu / 4)}{4(1+\mu)(1-\mu / 2)}}, \quad \bar{\omega}_{d}=\frac{\sqrt{1-\mu / 2}}{1+\mu} \cdot \omega_{s}
$$

- Assessment for both parameters: The probability that the parameter differs from its optimal value by more than 40% is at most 0.01 .

$$
P_{i}\left(\left|a_{i}-\bar{a}_{i}\right|>0.4 \bar{a}_{i}\right) \leq 0.01
$$

TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

- Tchebychev's inequality: $P\left(\left|a_{i}-\mathrm{E}\left(a_{i}\right)\right|>c\right) \leq \frac{\mathrm{V}\left(a_{i}\right)}{c^{2}}$

TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

- Tchebychev's inequality: $P\left(\left|a_{i}-\mathrm{E}\left(a_{i}\right)\right|>c\right) \leq \frac{\mathrm{V}\left(a_{i}\right)}{c^{2}}$
- implies random set

$$
A_{i}:(0,1] \rightarrow \mathcal{K}^{\prime}(\mathbb{R}), c \mapsto\left[\mathrm{E}\left(a_{i}\right)-\sqrt{\frac{\mathrm{V}\left(a_{i}\right)}{c}}, \mathrm{E}\left(a_{i}\right)-\sqrt{\frac{\mathrm{V}\left(a_{i}\right)}{c}}\right]
$$

TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

- Tchebychev's inequality: $P\left(\left|a_{i}-\mathrm{E}\left(a_{i}\right)\right|>c\right) \leq \frac{\mathrm{V}\left(a_{i}\right)}{c^{2}}$
- implies random set

$$
A_{i}:(0,1] \rightarrow \mathcal{K}^{\prime}(\mathbb{R}), c \mapsto\left[\mathrm{E}\left(a_{i}\right)-\sqrt{\frac{\mathrm{V}\left(a_{i}\right)}{c}}, \mathrm{E}\left(a_{i}\right)-\sqrt{\frac{\mathrm{V}\left(a_{i}\right)}{c}}\right]
$$

- Random sets for $a_{1}=\zeta_{d}$ and $a_{2}=\omega_{d}$ are combined by random set independence to one random set A on $\Omega_{\mathbb{A}}=(0,1]^{2}$ with values in $\mathcal{K}^{\prime}\left(\mathbb{R}^{2}\right)$

TMD - Output: displacement and acceleration

$$
X_{s}(T=1)
$$

$\ddot{X}_{s}(T=1)$

TMD - Output: first entrance and inclusion times

$$
b=0.5 \cdot \mathrm{E}\left(\sup _{t \in\left[t_{0}, t\right]}\left|\tilde{x}_{t}\right|\right)
$$

$$
B=[b, \infty)
$$

CDFs of $\underline{\tau}^{B}, \bar{\tau}^{B}$ and $\tau_{x \cdot, \bar{a}}^{B}$
$\bar{P}_{t}(B)=P\left(X_{t} \cap B \neq \emptyset\right)$
$\underline{P}_{t}(B)=P\left(X_{t} \subseteq B\right)$
$P_{\overline{\bar{a}}, t}(B)=P\left(x_{t, \bar{a}} \in B\right)$

TMD - Output: reduction of displacement

Reduction of displacement compared to displacement \tilde{x}_{s} of structure without TMD:

TMD - Output: reduction of displacement

Reduction of displacement compared to displacement \tilde{x}_{s} of structure without TMD:

- peak displacement: $r_{\infty, a}\left(\omega_{w}\right)=\frac{\sup _{t \in[0, \bar{t}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|}{\sup _{t \in[0, T]} \tilde{\bar{x}}_{s, t}\left(\omega_{w}\right) \mid}$

TMD - Output: reduction of displacement

Reduction of displacement compared to displacement \tilde{x}_{s} of structure without TMD:

- peak displacement: $r_{\infty, a}\left(\omega_{w}\right)=\frac{\sup _{t \in[0, \bar{T}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|}{\sup _{t \in[0, T]} \tilde{x}_{s, t}\left(\omega_{w}\right) \mid}$
- mean square reduction: $r_{2, a}\left(\omega_{w}\right)=\sqrt{\frac{\int_{0}^{\bar{t}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|^{2} d t}{\int_{0}^{\tau}\left|\tilde{x}_{s, t}\left(\omega_{w}\right)\right|^{2} d t}}$

TMD - Output: reduction of displacement

Reduction of displacement compared to displacement \tilde{x}_{s} of structure without TMD:

- peak displacement: $r_{\infty, a}\left(\omega_{w}\right)=\frac{\sup _{t \in[0, \bar{t}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|}{\sup _{t \in[0, \bar{T}]} \tilde{x}_{s, t}\left(\omega_{w}\right) \mid}$
- mean square reduction: $r_{2, a}\left(\omega_{w}\right)=\sqrt{\frac{\int_{0}^{\bar{t}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|^{2} d t}{\int_{0}^{\bar{t}}\left|\tilde{x}_{s, t}\left(\omega_{w}\right)\right|^{2} d t}}$
- two possible set-valued analogues:

$$
\begin{aligned}
R_{*}^{(1)}(\omega) & =\left\{r_{*, a}\left(\omega_{w}\right): a \in A\left(\omega_{\mathbb{A}}\right)\right\} \\
R_{*}^{(2)}(\omega) & =\left[\underline{R}_{*}(\omega), \bar{R}_{*}(\omega)\right]
\end{aligned}
$$

where \underline{R}_{*} and \bar{R}_{*} are computed from the boundaries of $\left|X_{s}\right|$

TMD - Output: reduction of displacement

Reduction of displacement compared to displacement \tilde{x}_{s} of structure without TMD:

- peak displacement: $r_{\infty, a}\left(\omega_{w}\right)=\frac{\sup _{t \in[0, \bar{t}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|}{\sup _{t \in[0, \bar{T}]} \tilde{\mathrm{x}}_{s, t}\left(\omega_{w}\right) \mid}$
- mean square reduction: $r_{2, a}\left(\omega_{w}\right)=\sqrt{\frac{\int_{0}^{\bar{t}}\left|x_{s, t, a}\left(\omega_{w}\right)\right|^{2} d t}{\int_{0}^{\tau}\left|\tilde{x}_{s, t}\left(\omega_{w}\right)\right|^{2} d t}}$
- two possible set-valued analogues:

$$
\begin{aligned}
R_{*}^{(1)}(\omega) & =\left\{r_{*, a}\left(\omega_{w}\right): a \in A\left(\omega_{\mathbb{A}}\right)\right\} \\
R_{*}^{(2)}(\omega) & =\left[\underline{R}_{*}(\omega), \bar{R}_{*}(\omega)\right]
\end{aligned}
$$

where \underline{R}_{*} and \bar{R}_{*} are computed from the boundaries of $\left|X_{s}\right|$

- it holds that $R_{*}^{(1)} \subseteq R_{*}^{(2)}$

TMD - Output: reduction of displacement

