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Consider slender structure

@ modelled by single-degree-of-freedom (SDOF) oscillator with mass
mg, viscous damping parameter ¢ and stiffness kg
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Consider slender structure
@ modelled by single-degree-of-freedom (SDOF) oscillator with mass
mg, viscous damping parameter ¢ and stiffness kg

@ weak damping

@ ground excitation x, (earthquake)
@ leads to structural vibrations with large amplitudes (displacement x;)
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Tuned Mass Damper (TMD)
@ modelled by single-degree-of-freedom (SDOF) oscillator with mass
my, viscous damping parameter ¢4 and stiffness ky
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Tuned Mass Damper (TMD)
@ modelled by single-degree-of-freedom (SDOF) oscillator with mass
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Tuned Mass Damper (TMD)
@ modelled by single-degree-of-freedom (SDOF) oscillator with mass
my, viscous damping parameter ¢4 and stiffness ky

@ kinetic energy is transferred from structure to TMD
@ optimal tuning of TMD depending on type of excitation
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Tuned Mass Damper (TMD)

@ modelled by single-degree-of-freedom (SDOF) oscillator with mass
my, viscous damping parameter ¢4 and stiffness ky

@ kinetic energy is transferred from structure to TMD
@ optimal tuning of TMD depending on type of excitation

@ possible in theory, very difficult in practice — parameter uncertainty
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Combined structure-TMD system

@ modelled by two-degrees-of-freedom oscillator
— system of ODEs
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Combined structure-TMD system

@ modelled by two-degrees-of-freedom oscillator
— system of ODEs

@ modelling ground acceleration Xz by white noise
— system of stochastic differential equations
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Combined structure-TMD system

@ modelled by two-degrees-of-freedom oscillator
— system of ODEs

@ modelling ground acceleration Xz by white noise
— system of stochastic differential equations

@ modelling parameter uncertainty by random sets
— set-valued processes as output
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Stochastic differential equations

dXt = f(t,Xt)dt + G(t,Xt)th
with
o tg<t<t< oo,

® {wt}>¢, being an m-dimensional Wiener process on a probability
space (Qu, Lw, Pw),

@ initial value x;, and coefficients f and G:
. d
Xt © Qw — RY, W > Xgp (W),

f: [to,f] x RY = RY, (t,x) — f(t,x),
G: [to,f] x RS = RIXM  (t x)+— G(t,x).
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Stochastic differential equations

dXt7a = f(t, a,Xt7a)dt =+ G(t, a, Xt,a)th

with uncertain parameters a € A C RP and

o tg<t<t< oo,
® {wt}>¢, being an m-dimensional Wiener process on a probability

space (Qu, Xw, Pu),
@ initial value x;, and coefficients f and G:

Xy o A xQ, — R (2, ww) — Xtg.a(ww),
fo [to,f] x AxRI — RY, (t,a,x) — f(t,a,x),
G: [to,f] x AxRI — RI>*™ (¢t a x)— G(t,a,x).
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Solution processes

@ Assume that for each a € A the conditions for the existence of a
unique solution {x¢ s} [y, 7 are fulfilled.
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x 2 [to, F] X A x Qu — R, (t,a,wn) — Xt,a(ww)

which is a stochastic process on [to, t] X A and (Qu, Zw, Pw).
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Solution processes

@ Assume that for each a € A the conditions for the existence of a
unique solution {x¢ s} [y, 7 are fulfilled.

@ This leads to the map
x 2 [to, F] X A x Qu — R, (t,a,wn) — Xt,a(ww)

which is a stochastic process on [to, t] X A and (Qu, Zw, Pw).
@ Under certain conditions it can be shown that x has a version
— whose sample paths are continuous on [tg, t] X A,

— which is B([to, t]) ® B(A) ® £ ,-measurable.
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Parameter uncertainty

@ To model the uncertainty of a we use a random compact set
A:Qp — K'(A)

— on a probability space (Qa, %4, Pa)

— with non-empty compact values being subsets of A
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Parameter uncertainty

@ To model the uncertainty of a we use a random compact set
A:Qp — K'(A)

— on a probability space (Qa, %4, Pa)
— with non-empty compact values being subsets of A
@ Defining measurability condition: for all B € B(R?) it holds that

A_(B) = {wA : A(wA) NB+# @} €2,
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Set-valued solution process

@ Define the set-valued map
X (t,w) = {x¢a(ww) : a € A(wa)}

where (t,w) € [to, t] x Q and € denotes the product space

(Q,Z, P) = (QA X QW,ZA X ZW, Py ® PW).
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Set-valued solution process

@ Define the set-valued map
X (t,w) = {x¢a(ww) : a € A(wa)}

where (t,w) € [to, t] x Q and € denotes the product space
(Q, 2, P) = (QA X QW, AL, PA® PW).

@ Is this a set-valued process (measurability)?
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Set-valued solution process

@ Define the set-valued map
X (t,w) = {x¢a(ww) : a € A(wa)}

where (t,w) € [to, t] x Q and € denotes the product space
(Q, 2, P) = (QA X QW, AL, PA® PW).

@ Is this a set-valued process (measurability)?

o What are its properties?
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Set-valued solution process

@ X is a set-valued process on [tg, t] and the completed probability

space (Q,fp,ﬁ) with values in K'(RY), i.e., for all t € [to, ] and
B € B(RY) it holds that

X (B)={w: Xe(w)NB£0} %",
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Set-valued solution process

@ X is a set-valued process on [tg, t] and the completed probability
space (Q,fp,ﬁ) with values in K'(RY), i.e., for all t € [to, ] and
B € B(RY) it holds that

X (B)={w: Xe(w)NB£0} %",

@ all sample functions of X are continuous with respect to the
Hausdorff-metric on K'(R9),
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Set-valued solution process

@ X is a set-valued process on [tg, t] and the completed probability
space (Q,fp,ﬁ) with values in K'(RY), i.e., for all t € [to, ] and
B € B(RY) it holds that

X (B)={w: Xe(w)NB£0} %",

@ all sample functions of X are continuous with respect to the
Hausdorff-metric on K'(R9),

@ X is measurable with respect to the product-c-algebra
_ =P
B([to, t]) @ X .
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Picture of a sample path
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Picture of a sample path

@ blue lines: boundaries of sample path of set-valued process X
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Picture of a sample path

@ blue lines: boundaries of sample path of set-valued process X

@ red line: sample path of a selection &
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rst entrance an lusion times

When does ¢ enter B for the first time?
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First entrance and inclusion times

When does ¢ enter B for the first time?
— first entrance time TgB tw — inf{t: {(w) € B}
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First entrance and inclusion times

When does X enter B for the first time?
— first entrance time 75 : w — inf{t : X(w) N B # 0}
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rst entrance an lusion times

When is X contained in B for the first time?
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First entrance and inclusion times

When is X contained in B for the first time?
— first inclusion time 72 : w — inf{t : X;(w) C B}
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First entrance and inclusion times

Under certain conditions 7 and 7

@ are random variables on (Q, X, P),
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First entrance and inclusion times

Under certain conditions 7 and 7
@ are random variables on (Q, X, P),

@ are even stopping times with respect to an appropriate filtration,
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First entrance and inclusion times

Under certain conditions 7 and 7
@ are random variables on (Q, X, P),
@ are even stopping times with respect to an appropriate filtration,

@ can be attained by first entrance times of selection processes of X.
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TMD - Mechanical model
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Defining

® mass ratio: = ¢ <1
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TMD - Mechanical model

ka
ng g:l mg
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> x(0)

mg
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Defining

® mass ratio: = ¢ <1

@ natural circular frequencies: ws = \/,’;—Ss, wy = \/,’7‘7—1

@ non-dimensional damping coefficients: (s = 5=, (4 = 52
S S

2wd mqy

Bernhard Schmelzer (Innsbruck) Set-valued vibration analysis September 2009 15 / 22



TMD - Mechanical model

The coupled equations of motion can be written as a 4-dimensional linear
system of SDEs of first order:

dys = Myrdt + Gdw;, yo=0

where
Xs 0
| xa - 0
Y = )-<s ) G - -1
Xd -1
0 0 1 0
M= 0 0 0 1
—w? —wip wip  —2Cws — 20qwap  2gwaf
wg fwz 2(qwy —2(qwqd
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TMD - Parameter uncertainty

o fixed parameters: p, (s and ws = 27/ T for different periods T
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TMD - Parameter uncertainty

o fixed parameters: p, (s and ws = 27/ T for different periods T
@ uncertain parameters: a = ((g,wq)

@ optimal values @ = ({4, @y) under white noise excitation:

Z—\/ p(1 — p/4) _ /1 p/2
47\ a1

T2y T 1w

.ws
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TMD - Parameter uncertainty

o fixed parameters: p, (s and ws = 27/ T for different periods T
@ uncertain parameters: a = ((g,wq)

@ optimal values @ = ({4, @y) under white noise excitation:

= \/ p(1 — p/4) _ /1 p/2

Vs Ry M A wap

.ws

@ Assessment for both parameters: The probability that the parameter
differs from its optimal value by more than 40% is at most 0.01.

P,-(]a,- — 5," > 0.45,') <0.01
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets
V(a,-)
c2

@ Tchebychev's inequality: P(|a; — E(a;j)| > ¢) <
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets

o Tchebychev's inequality: P(|a; — E(a;)| > ¢) < ¥(3)
@ implies random set
Ai:(0,1] = K'(R), ¢ — [E(ai) @EGO V(:,-)
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TMD - Parameter uncertainty

Modelling uncertainty by Tchebychev random sets
@ Tchebychev's inequality: P(|a; — E(a;j)| > ¢) <

@ implies random set

V(gi)

V@) g -

A (0,1] — K'(R),c — [E(ai) -

@ Random sets for a; = (4 and ap = wy are o7

combined by random set independence to
one random set A on Q4 = (0,1]? with 04
values in K'(R?) o2
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TMD - Output: first entrance and inclusion times

b=05- E(SUPte[to,ﬂ %)
B = [b, )

CDFs of 78, 78 and 75_
e 0.2

P.(B) = P(X: N B #0)
P(B) = P(X: € B)
Ps.+(B) = P(x: € B)
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tput: reduction of displacement

Reduction of displacement compared to displacement X5 of structure
without TMD:
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tput: reduction of displacement

Reduction of displacement compared to displacement X5 of structure
without TMD:

. sup |xs, ,a(WW)‘

o peak displacement: ro s(wy) = Su;:?fﬂ ‘)?Sft(wW)‘
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tput: reduction of displacement

Reduction of displacement compared to displacement X5 of structure
without TMD:

. sup |xs, ,a(WW)‘

o peak displacement: ro s(wy) = Su;:?fﬂ ‘)ﬂ(sft(wW)‘

Jo Ixs.t.0(ww)[2dt

@ mean square reduction: r; 5(wy) = 7 oo 2
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TMD - Output: reduction of displacement

Reduction of displacement compared to displacement X5 of structure
without TMD:

. sup |xs, ,a(WW)‘

o peak displacement: ro s(wy) = Su;:i’)ﬂﬂ ‘)ﬂ(sft(wW)‘

Jo Ixs.t.0(ww)[2dt

@ mean square reduction: r; 5(wy) = 7 oo 2

@ two possible set-valued analogues:

RM(w) {realww) - a € Alwa)}
RO(W) = [R.(w),Ru(w)]

where R, and R, are computed from the boundaries of | X;|
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TMD - Output: reduction of displacement

Reduction of displacement compared to displacement X5 of structure
without TMD:
o peak displacement: ry ,(w,) = Sotcld b aleow)

SUP¢e(o,7] |%s,t(ww)]

fot |xs,t,a(ww)|?dt

@ mean square reduction: r; 5(wy) = 7 oo 2

@ two possible set-valued analogues:

RMW) = {ra(ww):ac Awa)}
RAW) = [R.(w).Ru(w)]

where R, and R, are computed from the boundaries of | X;|

e it holds that R ¢ R®)
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TMD - Output: reduction of displacement
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