

Asymptotic properties of imprecise Markov chains

Filip Hermans Gert De Cooman

SYSTeMS Ghent University

10 September 2009, München

イロト イヨト イヨト イヨト

Imprecise Markov chain

• Every node is a state with finite state space $\mathcal{X} = \{x_0, x_1, \dots, x_n\}$.

・ロト ・ 日 ・ ・ ヨ ・ ・

Imprecise Markov chain

Every node is a state with finite state space X = {x₀, x₁,..., x_n}.
The upper transition operator T : ℝⁿ → ℝⁿ is given by

$$\overline{T}f := \begin{pmatrix} \overline{P}(f|x_1) \\ \overline{P}(f|x_2) \\ \vdots \\ \overline{P}(f|x_n) \end{pmatrix} \quad \text{so,} \quad \overline{T}f(x_i) = \overline{P}(f|x_i).$$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Imprecise Markov chain

Every node is a state with finite state space X = {x₀, x₁,..., x_n}.
The upper transition operator T : ℝⁿ → ℝⁿ is given by

$$\overline{T}f := \begin{pmatrix} \overline{P}(f|x_1) \\ \overline{P}(f|x_2) \\ \vdots \\ \overline{P}(f|x_n) \end{pmatrix} \quad \text{so,} \quad \overline{T}f(x_i) = \overline{P}(f|x_i) .$$

Doing so,
$$\overline{P}(f) = \overline{P}_0(\overline{T}^3 f)$$
 where $\overline{T}^3 \coloneqq \overline{T} \circ \overline{T} \circ \overline{T}$.

< ロト (同) (三) (三)

Outline

Properties of the transition operator

- Structuring the state space
- 4 Convergence in terms of state properties

$\overline{\mathcal{T}}$ has all the usual properties

The properties of upper previsions are transfered to the transition operator

- If $f \leq g$ then $\overline{T}f \leq \overline{T}g$ [monotonicity preserving],
- **3** If $c \in \mathbb{R}$ then $\overline{T}(f + c) = \overline{T}f + c$ [constant additivity],
- If $\alpha > 0$ then $\overline{T}(\alpha f) = \alpha \overline{T} f$ [positive-homogeneity].

< < p>< < p>

$\overline{\mathcal{T}}$ has all the usual properties

The properties of upper previsions are transfered to the transition operator

- If $f \leq g$ then $\overline{T}f \leq \overline{T}g$ [monotonicity preserving],
- **2** If $c \in \mathbb{R}$ then $\overline{T}(f+c) = \overline{T}f + c$ [constant additivity],
- Solution If $\alpha > 0$ then $\overline{T}(\alpha f) = \alpha \overline{T} f$ [positive-homogeneity].

From the properties, it automatically follows that

- the map \overline{T} is bounded,
- the map \overline{T} is non-expansive

$$\|\overline{T}f-\overline{T}g\|_{\infty}\leq \|f-g\|_{\infty}.$$

If a map has the first two properties it is also called topical.

A lot is known for bounded and non-expansive maps

Edelstein [1963] showed that all elements of the ω-limit set of f, ω_T(f), are recurrent and moreover, that T acts isometrically on every ω-limit set.

・ロト ・ 同ト ・ ヨト ・ ヨ

A lot is known for bounded and non-expansive maps

- Edelstein [1963] showed that all elements of the ω-limit set of f, ω_T(f), are recurrent and moreover, that T acts isometrically on every ω-limit set.
- Oue to a result of Sine [1990] we know that T^k f converges to a limit cycle for k → ∞,

$$\lim_{k\to\infty} \overline{T}^k f = \xi_f \text{ where } \overline{T}^p \xi_f = \xi_f.$$

Moreover, the maximal period p is limited by a function of the dimension of the underlying space only.

A lot is known for bounded and non-expansive maps

- Edelstein [1963] showed that all elements of the ω-limit set of f, ω_T(f), are recurrent and moreover, that T acts isometrically on every ω-limit set.
- Oue to a result of Sine [1990] we know that T^k f converges to a limit cycle for k → ∞,

$$\lim_{k\to\infty} \overline{T}^k f = \xi_f \text{ where } \overline{T}^p \xi_f = \xi_f.$$

Moreover, the maximal period p is limited by a function of the dimension of the underlying space only.

How we interprete convergence

イロト イロト イヨト イヨト

How we interprete convergence

- An imprecise Markov chain PF-converges if $\max \overline{T}^k f \to \min \overline{T}^k f$ as $k \to \infty$.
- An imprecise Markov chain converges if $\overline{T}^k f \to \xi_f$ with $\overline{T}\xi_f = \xi_f$ as $k \to \infty$
- Clearly PF-convergence \Rightarrow convergence.

Convergence can be restated in terms of fixed points

It can be easily seen that

Proposition

• An imprecise Markov chain converges if and only if every periodic points is also a fixed point.

Remember that f is a fixed point if Tf = f.

Convergence can be restated in terms of fixed points

It can be easily seen that

Proposition

- An imprecise Markov chain converges if and only if every periodic points is also a fixed point.
- An imprecise Markov chain PF-converges if and only if every periodic point of T is constant.

Remember that f is a fixed point if Tf = f.

< < p>< < p>

Convergence can be restated in terms of fixed points

It can be easily seen that

Proposition

- An imprecise Markov chain converges if and only if every periodic points is also a fixed point.
- An imprecise Markov chain PF-converges if and only if every periodic point of T is constant.

Remember that f is a fixed point if Tf = f.

To conclude upon (PF)-convergence, all periodic points of \overline{T} must be investigated. This is easy in the linear case, however ...

An accessibility relation \rightarrow can be defined

Definition

We say that state y is accessible from state $x, x \rightarrow y$, if there exists $n \in \mathbb{N}$ such that

 $\overline{T}^n I_y(x) > 0.$

- As \rightarrow is reflexive and transitive it determines a preorder on $\mathcal{X}.$
- $\bullet\,$ The binary relation $\leftrightarrow\,$ on $\,\mathcal{X}$ is the associated equivalence relation.
- This communication relation \leftrightarrow partitions the state set \mathcal{X} into equivalence classes called communication classes.
- The preorder \rightarrow induces a partial order on this partition, also denoted by \rightarrow .
- Because of this partial order \rightarrow , maximal communication classes will exist.

The relation \rightarrow structures the state space

WPMSIIP2 10 / 15

・ロト ・回ト ・ヨト ・

Communication classes split up the imprecise Markov chain

Proposition

Consider a stationary imprecise Markov chain with upper transition operator \overline{T} . Let C be a closed set of states, and let C be a partition of the state set \mathcal{X} into closed sets. Then

9 $\overline{\mathrm{T}}(hI_B)(x) = 0$ for all $h \in \mathcal{L}(\mathcal{X})$, all $x \in C$ and all $B \subseteq C^c$;

3
$$\overline{\mathrm{T}}h(x) = \overline{\mathrm{T}}(hI_{\mathcal{C}})(x)$$
 for all $h \in \mathcal{L}(\mathcal{X})$ and all $x \in \mathcal{C}$;

$$\mathbf{\mathfrak{T}}h = \sum_{C \in \mathcal{C}} \overline{\mathrm{T}}(I_C h) = \sum_{C \in \mathcal{C}} I_C \overline{\mathrm{T}}(I_C h) \text{ for all } h \in \mathcal{L}(\mathcal{X}).$$

< < p>< < p>

Communication classes split up the imprecise Markov chain

Proposition

Consider a stationary imprecise Markov chain with upper transition operator \overline{T} . Let C be a closed set of states, and let C be a partition of the state set \mathcal{X} into closed sets. Then

$$\textbf{9} \ \overline{\mathrm{T}}(hI_{\mathcal{B}})(x) = 0 \text{ for all } h \in \mathcal{L}(\mathcal{X}), \text{ all } x \in C \text{ and all } B \subseteq C^{c};$$

3
$$\overline{\mathrm{T}}h(x) = \overline{\mathrm{T}}(hI_{\mathcal{C}})(x)$$
 for all $h \in \mathcal{L}(\mathcal{X})$ and all $x \in \mathcal{C}$;

$$\overline{\mathrm{T}}h = \sum_{\mathcal{C}\in\mathcal{C}} \overline{\mathrm{T}}(I_{\mathcal{C}}h) = \sum_{\mathcal{C}\in\mathcal{C}} I_{\mathcal{C}} \overline{\mathrm{T}}(I_{\mathcal{C}}h) \text{ for all } h \in \mathcal{L}(\mathcal{X}).$$

Consequently, if more communication classes exist, then PF-convergence is not possible.

Example

Assume there are *n* communication classes and take the gamble $f = \sum_{k=1}^{n} k I_{C_k}$ then $\overline{T}f = \sum_{k=1}^{n} I_{C_k} \overline{T}k I_{C_k} = \sum_{k=1}^{n} I_{C_k} \overline{T}k = f$.

Regularity implies PF-convergence

Definition

- A maximal aperiodic communication class is called regular.
- If there is only one communication class, then ${\mathcal X}$ is irreducible.
- If \mathcal{X} is irreducible and aperiodic, \mathcal{X} itself is also called regular.

 $(\exists n \in \mathbb{N})(\forall k \ge n)(\forall x, y \in \mathcal{X})(x \xrightarrow{k} y).$

< < p>< < p>

Regularity implies PF-convergence

Definition

- A maximal aperiodic communication class is called regular.
- If there is only one communication class, then ${\mathcal X}$ is irreducible.
- If \mathcal{X} is irreducible and aperiodic, \mathcal{X} itself is also called regular.

 $(\exists n \in \mathbb{N})(\forall k \ge n)(\forall x, y \in \mathcal{X})(x \xrightarrow{k} y).$

- It can be shown that regularity of ${\mathcal X}$ is a sufficient condition for PF-convergence.
- However, regularity is too strong.

Example

Take the precise model with transition matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

Top class regularity

Definition

An imprecise Markov chain is said to be top class regular if

$$\mathcal{R}_{\rightarrow} \coloneqq \left\{ x \in \mathcal{X} \colon (\exists n \in \mathbb{N}) (\forall k \ge n) (\forall y \in \mathcal{X}) \overline{\mathrm{T}}^{k} I_{\{x\}}(y) > 0 \right\} \neq \emptyset.$$

 $\mathcal{R}_{\rightarrow}$ is the set of maximal regular states. This means that \mathcal{R} is a regular top class whenever the Markov chain is regular.

< ロト (同) (三) (三)

Top class regularity

Definition

An imprecise Markov chain is said to be top class regular if

 $\mathcal{R}_{\rightarrow} \coloneqq \left\{ x \in \mathcal{X} \colon (\exists n \in \mathbb{N}) (\forall k \ge n) (\forall y \in \mathcal{X}) \overline{\mathrm{T}}^k I_{\{x\}}(y) > 0 \right\} \neq \emptyset.$

 $\mathcal{R}_{\rightarrow}$ is the set of maximal regular states. This means that \mathcal{R} is a regular top class whenever the Markov chain is regular.

Top-class regularity is a necessary condition for PF-convergence, but not sufficient.

Example

Assume
$$\mathcal{X} = \{x, y\}$$
 and $\overline{T}f = \begin{pmatrix} f(x) \\ \max\{f(x), f(y)\} \end{pmatrix}$, then the 1 is belonging to the credal set to \overline{T} . Therefore there is no PF-convergence.

(日) (同) (三) (三)

Necessary and sufficient conditions for PF-convergence

Definition

A stationary imprecise Markov chain is called regularly absorbing if it is top class regular (under \rightarrow), meaning that

$$\mathcal{R}_{\rightarrow} := \left\{ x \in \mathcal{X} : (\exists n \in \mathbb{N}) (\forall k \ge n) (\forall y \in \mathcal{X}) \overline{\mathrm{T}}^k I_{\{x\}}(y) > 0 \right\} \neq \emptyset,$$

and if moreover it is leaky, i.e. for all y in $\mathcal{X} \setminus \mathcal{R}_{\rightarrow}$ there is some $n \in \mathbb{N}$ such that $\underline{T}^n I_{\mathcal{R}_{\rightarrow}}(y) > 0$.

(日) (同) (三) (三)

Necessary and sufficient conditions for PF-convergence

Definition

A stationary imprecise Markov chain is called regularly absorbing if it is top class regular (under \rightarrow), meaning that

$$\mathcal{R}_{\rightarrow} := \left\{ x \in \mathcal{X} \colon (\exists n \in \mathbb{N}) (\forall k \ge n) (\forall y \in \mathcal{X}) \overline{\mathrm{T}}^k I_{\{x\}}(y) > 0 \right\} \neq \emptyset,$$

and if moreover it is leaky, i.e. for all y in $\mathcal{X} \setminus \mathcal{R}_{\rightarrow}$ there is some $n \in \mathbb{N}$ such that $\underline{T}^n I_{\mathcal{R}_{\rightarrow}}(y) > 0$.

Remark that accessibility to the complete communication class ${\cal R}$ is required and not to a state of ${\cal R}.$

Example

Assume
$$\mathcal{X} = \{x, y, z\}$$
 and $\underline{T}f = \begin{pmatrix} \min\{f(x), f(y)\}\\ \min\{f(x), f(y)\}\\ \min\{f(x), f(y)\} \end{pmatrix}$ then

$$\underline{T}^n I_{\{x\}} = \underline{T}^n I_{\{y\}} = 0$$
 and $\underline{T}^n I_{\{x,y\}} = I_{\{x,y\}}.$

Necessary and sufficient conditions for PF-convergence

Definition

A stationary imprecise Markov chain is called regularly absorbing if it is top class regular (under \rightarrow), meaning that

 $\mathcal{R}_{\rightarrow} := \left\{ x \in \mathcal{X} : (\exists n \in \mathbb{N}) (\forall k \ge n) (\forall y \in \mathcal{X}) \overline{\mathrm{T}}^{k} I_{\{x\}}(y) > 0 \right\} \neq \emptyset,$

and if moreover it is leaky, i.e. for all y in $\mathcal{X} \setminus \mathcal{R}_{\rightarrow}$ there is some $n \in \mathbb{N}$ such that $\underline{T}^n I_{\mathcal{R}_{\rightarrow}}(y) > 0$.

Theorem

An imprecise Markov chain is PF-converging if and only if it is regularly absorbing.

What about convergence in general?

Conjecture

An imprecise Markov chain converges if and only if

- Ithe →-maximal communication classes are regular and
- every periodic communication class leaks to the union of its →-dominating classes.

