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• Global ocean circulation is driven by winds and the exchange of heat and

water vapour at the sea surface.
• Wind driven surface currents head polewards from the equatorial Atlantic

Ocean, cooling all the while. Having lost much of its heat, the surface water

becomes so salty (through evaporation) that it is dense enough to sink.

• The return flow occurs at the bottom of the North Atlantic, also along the

eastern flank of North America. This is the North Atlantic thermohaline

circulation (thermo- for heat and -haline for salt, which determine the
density of sea water).

• On their journey, the water masses transport heat energy around the globe,

which has a large impact on the climate of our planet.

References
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Seager,R., 2005,’The Source of Europe’s Mild Climate’,American Scientist)



Global circulation

3 / 47



Thermohaline shutdown

4 / 47

Many atmosphere-ocean models show a slowdown of thermohaline circulation

in simulations of the 21st century with the expected rise in greenhouse gases.
[This is due to a combination of effects which reduce the density of surface
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In some models, the THC shuts down rapidly and irreversibly once a critical

threshold is passed.
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Many atmosphere-ocean models show a slowdown of thermohaline circulation

in simulations of the 21st century with the expected rise in greenhouse gases.
[This is due to a combination of effects which reduce the density of surface

waters, which makes it harder for them to sink.]

In some models, the THC shuts down rapidly and irreversibly once a critical

threshold is passed.

“ The weight of evidence makes it clear that climate change is a real and

present danger. The Exeter conference was told that whatever policies are

adopted from this point on, the Earth’s temperature will rise by 0.6F within the

next 30 years. Yet those who think climate change just means Indian summers

in Manchester should be told that the chances of the Gulf stream - the Atlantic

thermohaline circulation that keeps Britain warm - shutting down are now
thought to be greater than 50%.”

[Burying carbon Leader Column Thursday February 3, 2005 The Guardian]
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The chances of the Gulf stream shutting down are now thought to be greater

than 50%

Questions

• What does this statement mean?

• What analysis was actually done to reach this conclusion?

• What analysis could possibly be done to justify (or contradict) this

conclusion?

• What do we learn about real physical systems from the analysis of
(necessarily imperfect) models?
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The chances of the Gulf stream shutting down are now thought to be greater

than 50%

[1] Exploring the behaviour of our favourite climate model gives us qualitative

and semi-quantitative insights about climate behaviour.

However, behaviour of our model is not the same as behaviour of actual
climate.

Analysing models helps us to make judgements, but model analyses are not

the same as judgements about climate.

[2] When we consider what actions we should take, we are concerned with
actual climate. For policy development, the basic question is:

what does the collection of models, scientific theories, observations and

analysis of the likely implications arising from our imperfect knowledge,

[model deficiency, observation error, uncertainty about physical constants, etc.]

tell us about actual climate behaviour?
Such analysis results in our Best Current Judgements as to future climate

behaviour, expressed as uncertainties.
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• Climate models are typically specified over the whole of the earth, because

the earth is a conservative system with simple solar forcing. However, they
can only be solved on large grids, 100s of kms across. Separate models

‘downscale’ these outputs to the regional level.

• Climate models combine conservation equations (eg conservation of

momentum) with state equations (eg to express the density of water as a

function of temperature and salinity).

• A large climate model couples together modules for an ocean, an
atmosphere, a cryosphere (land-ice and sea-ice), a carbon cycle (plankton),

a sulphur cycle (emissions, including volcanoes), and land use. In simpler

models some of these modules are left out or prescribed; in more

complicated models they are dynamic, and interact with each other.

• The coupling of modules is extremely complicated, because the individual
processes tend to be solved on different spatial grids, and tend to evolve at

different rates.

• Thermo-haline shutdown? Tentative prediction shown by simple models

and paleo records, but not by many of the large models (so far).
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Large climate models take months to run on supercomputers. One of the

biggest computers in the world is the Earth Simulator in Japan, which is often
used for running climate models.
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One leading climate model at the moment is HadCM3, based at the UK Met

Office. One component of this model is HadAM3, the atmospheric module. In a
simple experiment to study the effect of CO2-doubling (Murphy et al, 2004,

Nature), this is coupled with simple mixed-layer ocean sea-ice models.

The climate model has about 100 uncertain parameters, including:

1. Large scale cloud. Six parameters

2. Convection. Six parameters

3. Sea ice. Two parameters
4. Radiation. Four parameters

5. Dynamics. Four parameters

6. Land surface. Four parameters

7. Boundary layer. Four parameters

We have a few hundred evaluations of the mode, made over a period of about
three years. These evaluations are one of the main resources for the UK

Climate Projections Programme 2009, which is intended as a fairly definitive

statement about how climate change will impact the UK.
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What are probabilistic climate projections?

Before using the UKCP09 probabilistic climate projections, it is important to

understand what they are and what they are not.

A probabilistic climate projection:

IS NOT an objective probability, where a situation is well understood, where all

outcomes can be accounted for or where probabilities can be revised based on
observed outcomes (such as tossing a coin or rolling a dice);

IS rather a subjective probability, providing an estimate based on the available

information and strength of evidence (similar to horse-racing odds);

encapsulates some, but not all, of the uncertainty associated with projecting

future climate;

is dependent on the method used, including assumptions and choices made,
meaning that a different method would produce different results;

is based on the current evidence (i.e. models and observations), and new

evidence in the future may lead to the results being modified;

does not reduce uncertainty, just makes it more transparent;

aims to allow users to make more robust decisions.
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• Basic ingredients:

x∗: system properties (unknown)

y: system behaviour (influenced by x∗)

z: partial observation of y (with error)

• Ideally, we would like to construct a deterministic computer model F ,

embodying the laws of nature, which satisfies

y = F (x∗)

• In practice, however, the our actual model F is inadequate:

◦ F simplifies the physics;

◦ F approximates the solution of the physical equations

• This raises the basic question as to what does the imperfect F tell us about

the system values (x∗, y)?

• How about several different (imperfect) models for (x∗, y)?
• In particular, input and output very high dimensional and evaluating F (x)

for any x may be VERY expensive.
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5. We add initial and boundary condition and forcing function uncertainty.
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An emulator is a probabilistic belief specification for a deterministic function.

Our emulator for component i of F might be

fi(x) =
∑

j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known functions of x,

[
∑

j βij gij(x) expresses global variation in F ]
u(x) is a weakly stationary stochastic process (maybe Gaussian)

so Var(ui(x)) is the same for all x and Cov(ui(x), ui(x
′)) depends only on

the distance between x and x′.

[u(x) expresses local variation in F ]

We fit the emulator, given a collection of model evaluations, using our favourite

statistical tools - generalised least squares, maximum likelihood, Bayes - with a
generous helping of expert judgement.

So, we need careful experimental design to choose which evaluations of the

model to make, and detailed diagnostics, to check emulator validity.
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Aim: to tackle problems arising from all of the uncertainties inherent in

imperfect computer models of highly complex physical systems, using a
Bayesian formulation. This involves

• a prior probability distribution for system properties x∗

• a probabilistic “emulator” f for the computer function F
• a probabilistic discrepancy measure relating F (x∗) to system behaviour y
• a likelihood function relating historical data z to y

This full probabilistic description provides a formal framework to synthesise

expert elicitation, historical data and a careful choice of simulator runs.

We may then use our collection of computer evaluations and historical

observations to make a Bayesian analyssis of the physical process

• to determine “correct” settings for simulator inputs (calibration);

• to assess the future behaviour of the system (forecasting).

• to “optimise” the performance of the system
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(i) it is difficult to give a meaningful full prior probability specification over high
dimensional spaces;

(ii) the computations, for learning from data (observations and computer runs)

and choosing informative runs, may be technically difficult;

(iii) the likelihood surface is extremely complicated, and any full Bayes

calculation may be extremely non-robust.
However, the idea of the Bayesian approach, namely capturing our expert prior

judgements in stochastic form and modifying them by appropriate rules given

observations, is conceptually appropriate (and there is no obvious alternative).

The Bayes Linear approach is (relatively) simple in terms of belief specification

and analysis, as it is based only on the mean, variance and covariance

specification which, following de Finetti, (see de Finetti “Theory of Probability”,
Wiley, 1974), we take as primitive.

For a full account, see

Michael Goldstein and David Wooff (2007) Bayes Linear Statistics: Theory and

Methods, Wiley.
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Ez(y) = E(y) + Cov(y, z)Var(z)−1(z − E(z)),
Varz(y) = Var(y) − Cov(y, z)Var(z)−1Cov(z, y)

Ez[y], Varz[y] are the expectation and variance for y adjusted by z.
Bayes linear adjustment may be viewed as:

[1] an estimation procedure;

[2] an approximation to a full Bayes analysis;

[3] a generalisation of conditioning;

[4] the “appropriate” analysis given a partial specification based on expectation
(with methodology for modelling, interpretation and diagnostic analysis);

[5] mathematically - a treatment where we consider subspaces, rather than

random quantities, as fundamental;

[6] a formal subjective framework accounting for all uncertainties (recognising

Bayesian analysis itself as a model).
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zh = yh + eh, yh = Fh(x∗) + ǫh, for outputs Fh with observed history zh

Calibration: we learn about x∗ using simulator evaluations (from which we build

the emulator) and z.
History matching: we rule out regions of x space which are unlikely to give rise

to observed history z.

Using the emulator we can obtain, for each set of inputs x, the mean and

variance, E(Fh(x)) and Var(Fh(x)).

If x = x∗, then

Var(zi − E(Fi(x))) = Var(Fi(x)) + Var(ǫi) + Var(ei).

We can therefore calculate, for each output Fi(x), the “implausibility” if we

consider the value x to be the best choice x∗, which is

I(i)(x) = |zi − E(Fi(x))|2/[Var(Fi(x)) + Var(ǫi) + Var(ei)]

[Large values of I(i)(x) suggest that it is implausible that x = x∗.]
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The implausibility calculation can be performed univariately, or by multivariate

calculation over sub-vectors. The implausibilities are then combined, such as
by using IM (x) = maxi I(i)(x), and can then be used to identify regions of x
with large IM (x) as implausible, i.e. unlikely to be good choices for x∗.

With this information, we can then refocus our analysis on the ‘non-implausible’

regions of the input space, by

(i) making more simulator runs
(ii) refitting our emulator

over such sub-regions and repeating the analysis.

This process is a form of iterative global search aimed at finding all choices of

x∗ which would give good fits to historical data.

[Note the strong relationship between this statistical approach and more

traditional optimisation methods for solving high dimensional ill-posed inverse
problems.]

We may find no good choices at all which give good fits and that is a clear sign

of problems with our physical simulator or with our data.
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AIM: to predict those values yp for which we do not yet have observations.

From the computer model emulator, we have the mean and variance of F (x)
for each input choice x.

Therefore, we compute the mean and variance of F ∗ = F (x∗) by conditioning

on and then integrating with respect to a prior distribution on x∗.

Given E(F ∗), Var(F ∗), and the discrepancy and observation error variances

Var(ǫ), Var(e), compute joint mean and variance of collection yp, z,
[from (yp = F ∗

p + ǫp, z = yh + e)].

We now evaluate the adjusted mean and variance for future values yp adjusted

by z using the Bayes linear adjustment formulae.

This analysis gives system forecasts without model calibration, and therefore is

tractable even for large systems.
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Major advances in cosmology in the last 100 years (mainly thanks to Einstein)

• Universe began in hot dense state: The Big Bang
• Since then Universe has been expanding rapidly

Cosmologists have spent much time and money researching the beginning, the

evolution, the current content, and the ultimate fate of the Universe.

Now know that the observable Universe is composed of billions of galaxies

each made up of 10 million - 10 trillion stars

How did these galaxies form?



Andromeda Galaxy and Hubble Deep Field View
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• Andromeda Galaxy: closest large galaxy to our own milky way, contains 1

trillion stars.

• Hubble Deep Field: furthest image yet taken. Covers 2 millionths of the sky
but contains over 3000 galaxies.
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Recent observations of galaxies have suggested that only 3 percent of the

entire energy content of the universe is the normal matter which forms stars,
planets and us.

A further 23 percent is ’Dark Matter’ (and the rest is Dark Energy).

Dark Matter cannot be ’seen’ as it does not give off light (or anything else).
However it does have mass and therefore affects stars and galaxies via gravity.

In order to study the effects of Dark Matter cosmologists try to model Galaxy
formation

• Inherently linked to amount of Dark Matter

• Of fundamental interest as tests cosmologists’ knowledge of a wide range
of complicated physical phenomena
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The simulation is performed in two parts:

[1] First an N-Body simulation is run to determine the behaviour of fluctuations

of mass in the early Universe, and their subsequent growth into millions of

galaxy sized lumps of mass in the following 12 billion years.

[A very heavy simulation which takes 3 months, done on a supercomputer and

cannot be easily repeated.]

[2] These results on the behaviour of the massive lumps are then used by a

more detailed Galaxy Formation simulation (called GALFORM) which models

the far more complicated interactions of normal matter: gas cloud formation,

star formation and the effects of black holes at the centre of galaxies.

The first simulation is done on a volume of size (500 Mega-Parsec)3 or (1.63

billion light-years)3

This volume is split into 512 sub-volumes which are independently simulated

using the second model GALFORM. This simulation is run on upto 256 parallel
processors, and takes 20-30 minutes per sub-volume per processor
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Universe 13 billion years (Today)
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Outputs: Galform provides many outputs but we start by looking at the bj and

K luminosity functions

• bj luminosity function: the number of blue (i.e. young) galaxies of a certain

luminosity per unit volume

• K luminosity function: the number of red (i.e. old) galaxies of a certain

luminosity per unit volume

These outputs can be compared to observational data

Inputs: 17 input variables reduced to 8 after expert judgements. These include:

• vhotdisk: relative amount of energy in the form of gas blown out of a galaxy

due to star formation
• alphacool: regulates the effect the central black hole has in keeping large

galaxies ’hot’

• yield: the metal content of large galaxies

and five others: alphahot, stabledisk, epsilonStar, alphareheat and vhotburst



Observational Data: Galaxy Surveys
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Earth at centre of image. Data taken by telescopes looking in two seperate

directions. Galaxies observed up to a distance of 1.2 billion light years.
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Basic Questions

• Do we understand how galaxies form?

• Could the galaxies we observe have been formed in the presence of large

amounts of dark matter?

Fundamental Sources of Uncertainty

• We only observe the galaxies in our ‘local’ region of the Universe: it is
possible that they are not representative of the whole Universe.

• The output of the simulation is a ‘possible’ Universe which should have

similar properties to ours, but is not an exact copy.

• The output of the simulation is 512 different computer models for “slices” of

the universe which are exchangeable with each other and (hopefully) with
slices of our universe.

• We are uncertain which values of the input parameters should be used

when running the model
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discarding all points that we are (reasonably) sure will not give an ’acceptable’

fit to the output data

We do this in stages, as follows:

• design a set of runs of the simulator within the input volume of interest

• choose a subset of the outputs for which we have system observations

• emulate these outputs

• calculate implausibility over the selected input volume

• discard all x input points that have implausibility greater than a certain cutoff

This process is then repeated. This is refocusing. As we are now in a reduced

input volume, outputs may be of simpler form and therefore easier to emulate.

As we have reduced the variation in the ouputs arising from the most important

inputs, this also allows us to assess variation due to secondary inputs.
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Following the cosmologist own attempt to history match Galform, we chose to

run only the first 40 sub-volumes (out of 512) and examine their mean. The

simulator function fi(x) is now taken to be the mean of the luminosity outputs

over the first 40 sub-volumes.

Design: Ran a 1000 point Latin Hypercube design across the key input

parameters

Outputs: Decided to choose 11 outputs from the luminosity functions as they
could be emulated accurately

Active Variables: For each output we choose 5 active variables xA, i.e. those

inputs which are the most important for explaining variation in the output.
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• Bj Luminosity: young (blue) galaxies

• K Luminosity: old (red) galaxies

• Circles are observed

• Coloured lines are example outputs for different input parameter choices
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Outputs chosen to be informative enough to allow us to cut down the parameter

space, but simple enough to be emulated easily.
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A) + δi(x)

where now B = {βij} are unknown scalars, gij are now monomials in xA of

order 3 or less, and u(xA) is a gaussian process. The nugget δi(x) models
the effects of inactive variables as random noise.

The ui(x) have covariance structure given by:

Cov(ui(x
A
1 ), ui(x

A
2 ), ) = σ2 exp[−θi|x

A
1 − xA
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Note that different outputs have different active variables: all of the 8 input

variables were found to be active for at least one of the outputs.

Here the Adjusted R2 for the polynomial fits were between 0.79 and 0.92

The Emulators give the expectation E(fi(x)) and variance Var(fi(x)) at point

x for each output given by i = 1, ..., 11.
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Before calculating the implausibility we need to assess the Model Discrepancy

and Measurement error.

Model Discrepancy has three components:

• ΦE : Expert assessment of model discrepancy of full model with 17

parameters and using 512 sub-volumes

• Φ40: Discrepancy term due to (i) choosing first 40 sub-volumes from full

512 sub-volumes, and (ii) need to extrapolate to our universe. Assess this

by repeating 100 runs but now choosing 40 random regions.

[More carefully, we may construct an exchangeable system of emulators to

fully account for this discrepancy.]

• Φ12: As we have neglected 9 parameters (due to expert advice) we need to

assess effect of this (by running latin hypercube design across all 17
parameters)
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Observational Errors composed of 4 parts:

• Normalisation Error: correlated vertical error on all luminosity output points

• Luminostiy Zero Point Error: correlated horizontal error on all luminosity

points

• k + e Correction Error: Outputs have to be corrected for the fact that

galaxies are moving away from us at different speeds (light is red-shifted),

and for the fact that galaxies are seen in the past (as light takes millions of

years to reach us)

• Poisson Error: assumed Poisson process to describe galaxy production (not

very accurate assumption!)
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With the help of expert judgements, we decide on an Implausibility cutoff: all x
points with IM (x) greater than this cutoff are discarded as they represent
points that we expect would give a fit to the data that would be unacceptable to

the experts.

For first stage decided on a cutoff of IM (x) < 3.5 With this choice we were

able to exclude approximately 92% of the initial input space.

We want to understand the structure of the implausibility function of input
parameter space.

In the first stage we have 8 input parameters that are active, so it is difficult to

visualise or even to evaluate the implausibility IM (x) over a 8D grid of 158

points.

2-Dimensional Projection For each of the 28 pairs of active variables we
minimize the implausibility across the remaining active variables

If a point on these plots is implausible then it will be implausible for any choice

of the other active variables.
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Once the implausibility cutoff IM (x) < 3.5 has been imposed this defines the

volume of input parameter space that we are still interested in searching.

We can now refocus by designing a new set of runs of Galform, where these

runs are restricted to the reduced or non-implausible volume.

Do this by generating a large latin hypercube design over the original active

variables, and reject any points in this design that have IM (x) > 3.5.

We found that 2004 points survived and these were taken as the next set of

runs for Galform.

It is possible that the reduced volume is now composed of 2 or more

unconnected volumes. We need to know this as each volume would most likely
have very different behavior and hence in Stage 2 we would emulate each of

these volumes separately.

We used Cluster Analysis on points in the reduced volume to determine

connectedness.

In this case the region was found to be simply connected.
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• We now repeat the above process but now we are only studying Galform’s

behavior over the reduced volume.
• As we are now dealing with only 8 percent of the original input parameter

volume, the Galform outputs may be smoother.

• Therefore our emulation techniques may give better representations for the

outputs, and we may be able to include more output variables that were

previously hard to emulate with sufficient reliability.

• We now use all 8 variables in each emulator.
• The Adjusted R2 of the emulators were now between 0.83 and 0.98. This is

due to previously masked variance now being resolved as we are emulating

a smoother function with more active variables.

• We can now calculate the implausibility as before. As our emulator

accuracy improves, we may further reduce the input parameter space.
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• We have completed Four Stages:

No. Model Runs No. Active Vars Adjusted R2 Space Remaining

Stage 1 1000 5 0.58 - 0.90 8.0 %

Stage 2 1916 8 0.83 - 0.98 2.9 %

Stage 3 1487 8 0.79 - 0.99 1.2 %

Stage 4 1899 10 0.75 - 0.99 0.12 %

• In Stages 3 and 4 we used a Multivariate Implausibility measure to help

reduce space further.

• In Stage 4 we included 2 more active input variables that had previously
been inactive.
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The approach that we have described appears to be very effective in identifying

the sub-space of potential matches to observations of the universe.

We are now at the stage of introducing additional physical observations to

constrain further the parameter space. In this way, we have found good

matches to a variety of other phenomena that the model is intended to explain.

In general, this approach to statistical ill-posed inverse problems, namely

finding the class of all “history matches” which are of sufficiently good quality

subject to all of the irreducible uncertainties associated with the model and the

data, seems tractable, promising and effective.

History matching often is the first stage of a larger methodology which applies
the uncertainty models that we have described for activities such as system

forecasting and optimisation.
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The chances of the Gulf stream shutting down are now thought to be greater

than 50%

Questions

• What does this statement mean?

It should be a statement of the uncertainty of the scientist about the physical

process given all of the uncertainties inherent in the physical modelling.

• What analysis was actually done to reach this conclusion?

Probably not much.

• What analysis could possibly be done to justify (or contradict) this
conclusion?

The type of full Bayes linear uncertainty analysis that we’ve described.

• What do we learn about real physical systems from the analysis of

(necessarily imperfect) models?

If we account for all uncertainties (which may be difficult), then we obtain a
full uncertainty analysis for the behaviour of the physical system.
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And check out the website for the

Managing Uncertainty in Complex Models (MUCM) project

[A consortium of Aston, Durham, LSE, Sheffield and Southampton all hard at

work on developing technology for computer model uncertainty problems.]
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