Credal Sets and Reliability Bounds for Series Systems

Thomas Fetz

Unit for Engineering Mathematics University of Innsbruck, Austria Thomas.Fetz@uibk.ac.at

Article: Th. Fetz, F. Tonon, *Probability bounds for series systems* with variables constrained by sets of probability measures.

Second Workshop on Principles and Methods of Statistical Inference with Interval Probability

Munich 2009

Introduction

Series system of *m* components and system's reliability bounds

- F_i means that component *i* fails.
- $P(F_i)$ is the failure probability of component *i*.
- System fails if at least one component fails.

What is the probability p_f of failure for the system?

Reliability bounds for the system if nothing is known about dependencies between the components:

$$\max_{i=1,\ldots,m} P(F_i) \le p_f \le \min\left(\sum_{i=1}^m P(F_i), 1\right)$$

(Fréchet bounds)

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

Series system of *m* components and system's reliability bounds

$$P(F_1) \in [\underline{P}(F_1), \overline{P}(F_1)]$$

$$P(F_2) \in [\underline{P}(F_2), \overline{P}(F_2)]$$

$$P(F_3) \in [\underline{P}(F_3), \overline{P}(F_3)]$$

$$P(F_m) \in [\underline{P}(F_m), \overline{P}(F_m)]$$

Extension:

- Intervals given for the probabilities of failure of the components.
- Inserting the intervals into the formulas of the reliability bounds.
- See Lev Utkin's paper.

Rigid portal frame

• Loads *H* and *V*.

Rigid portal frame

- Loads *H* and *V*.
- In 1, 2, 3, 4 plastic hinges may occur.
- Plastic moments M_1 , M_2 , M_3 , M_4 .

Rigid portal frame

- Loads *H* and *V*.
- In 1, 2, 3, 4 plastic hinges may occur.
- Plastic moments M_1 , M_2 , M_3 , M_4 .

Four failure modes

Series system of *m* failure modes and system's reliability bounds

- *F_i* means that mode *i* occurs.
- *P*(*F_i*) is the failure probability of mode *i*.
- System fails if at least one failure mode occurs.

What is the probability p_f of failure for the system?

Reliability bounds for the system if we want to decrease the computational effort:

$$\max_{i=1,\dots,m} P(F_i) \le p_f \le \min\left(\sum_{i=1}^m P(F_i), 1\right)$$

Input variables

• Variables
$$X = (X_1, ..., X_n) = (M_1, M_2, M_3, M_4, H, V)$$
.

Modelling the uncertainty of the input variables X_i

- Normal distributions. (What the engineers are doing)
- Parameterized probability distributions:
 Set M of all normal distributions with μ ∈ [μ, μ] and σ ∈ [σ, σ].
- Set M of probability measures generated by p-boxes or random sets → credal set.
- We assume (strong or random set) independence.

Limit state functions g_i

• For mode *i*: $g_i : D \subseteq \mathbb{R}^n \to \mathbb{R} : x \mapsto g_i(x), g_i(x) \le 0 \to failure.$

Limit state functions for the four failure modes

Credal Sets and Reliability Bounds ...

Limit state functions g_i and g_{syst}

•
$$F_i = g_i^{-1}((-\infty, 0]).$$

• $g_{\text{syst}}(x) = \min_i g_i(x)$, probability of failure: $P(F_1 \cup \dots \cup F_m).$
 $P(F_1 \cup \dots \cup F_m) \le \min\left(\sum_{i=1}^m P(F_i), 1\right)$

Properties of g_i and g_{syst}

•
$$g(x) = (g_1(x), \ldots, g_m(x))^T = Ax.$$

- g_i linear and monotonic (increasing or decreasing).
- g_{syst} non-linear, in general not monotonic.

Modelling the uncertainty of the variables

Each random variable X_i , $X = (M_1, M_2, M_3, M_4, H, V)$, is normally distributed, with parameters $(\mu_{X_i}, \sigma_{X_i})$:

 $\mu_X = (1.0, 1.0, 1.0, 2.1, 2.0, 1.0)^T, \ \sigma_X = (0.15, 0.15, 0.15, 0.15, 0.17, 0.80)^T.$

Computation of $P(F_1)$, $P(F_2)$, $P(F_3)$, $P(F_4)$

The linear components $g_i(X)$ of g(X) are again normally distributed with parameters $\mu_{g(X)} = \mathbf{A}\mu_X$ and $\sigma_{g(X)}^2 = \mathbf{B}\sigma_X^2$ where

$$\mathbf{B}_{ij} = \mathbf{A}_{ij}^2, \quad \sigma_X^2 = (\sigma_{X_1}^2, \dots, \sigma_{X_6}^2)^T, \quad \sigma_{g(X)}^2 = (\sigma_{g_1(X)}^2, \dots, \sigma_{g_4(X)}^2)^T.$$

The first failure mode's failure probability, $P(F_1)$, is obtained as

$$P(F_1) = P(\{g_1(X) \le 0\}) = F(0; \mu_{g_1(X)}, \sigma_{g_1(X)}^2) = F(0; \mathbf{A}_{1,*} \, \mu_X, \mathbf{B}_{1,*} \, \sigma_X^2)$$

where *F* is the value of the normal distribution function with parameters $\mu_{g_1(X)}$ and $\sigma_{g_1(X)}^2$, and evaluated at 0.

Results

٥

$$P(F_1) = 3.4096 \cdot 10^{-6}$$
, $P(F_2) = 1.6020 \cdot 10^{-6}$
 $P(F_3) = 6.7281 \cdot 10^{-12}$, $P(F_4) = 9.1368 \cdot 10^{-6}$

System reliability bounds:

$$p_f^- = \max_{i=1,\dots,4} P(F_i) = 9.1368 \cdot 10^{-6}$$
$$p_f^+ = \min\left(\sum_{i=1}^4 P(F_i), 1\right) = 1.4148 \cdot 10^{-5}.$$

 Using the limit state function g_{syst} and Monte-Carlo simulation the probability of failure of the system p_f is

$$p_f = P(\{g_{\text{syst}}(X) \le 0\}) = 1.3138 \cdot 10^{-5}.$$

What happens if we make the variables (more) imprecise?

• What happens if we make the variables (more) imprecise? We get intervals for the *P*(*F_i*).

- What happens if we make the variables (more) imprecise?
 We get intervals for the *P*(*F_i*).
- Computing these intervals and inserting these intervals into the formulas for the system reliability bounds...

- What happens if we make the variables (more) imprecise?
 We get intervals for the *P*(*F_i*).
- Computing these intervals and inserting these intervals into the formulas for the system reliability bounds...
- Is the computation of these intervals always cheaper than the computation of the probability of failure of the system using g_{syst}?

- What happens if we make the variables (more) imprecise?
 We get intervals for the *P*(*F_i*).
- Computing these intervals and inserting these intervals into the formulas for the system reliability bounds...
- Is the computation of these intervals always cheaper than the computation of the probability of failure of the system using g_{syst}?
- Are there dependencies between the modes?

- What happens if we make the variables (more) imprecise?
 We get intervals for the *P*(*F_i*).
- Computing these intervals and inserting these intervals into the formulas for the system reliability bounds...
- Is the computation of these intervals always cheaper than the computation of the probability of failure of the system using g_{syst}?
- Are there dependencies between the modes? Yes, because of shared variables.

- What happens if we make the variables (more) imprecise?
 We get intervals for the *P*(*F_i*).
- Computing these intervals and inserting these intervals into the formulas for the system reliability bounds...
- Is the computation of these intervals always cheaper than the computation of the probability of failure of the system using g_{syst}?
- Are there dependencies between the modes? Yes, because of shared variables.
- Strong or random set independence?

- What happens if we make the variables (more) imprecise?
 We get intervals for the *P*(*F_i*).
- Computing these intervals and inserting these intervals into the formulas for the system reliability bounds...
- Is the computation of these intervals always cheaper than the computation of the probability of failure of the system using g_{syst}?
- Are there dependencies between the modes? Yes, because of shared variables.
- Strong or random set independence?
- Do the system reliability bounds help us if there is nothing known about how the variables interact?

Notations for the intervals of probabilities

 $I_{F_i} = [\underline{P}(F_i), \overline{P}(F_i)]$ interval for the *i*-th mode's probability of failure,

$$\underline{P}(F_i) = \inf\{P(F_i): P \in \mathcal{M}\},\ \overline{P}(F_i) = \sup\{P(F_i): P \in \mathcal{M}\},\ F \in \mathcal{M}\}$$

$$I_f = [\underline{p}_f, \overline{p}_f]$$

interval for the system's probability of failure,

$$\begin{split} I_{f,\text{ex}}^{-} &= [\underline{p}_{f,\text{ex}}^{-}, \overline{p}_{f,\text{ex}}^{-}] \\ I_{f,\text{ex}}^{+} &= [\underline{p}_{f,\text{ex}}^{+}, \overline{p}_{f,\text{ex}}^{+}] \\ I_{f}^{-} &= [\underline{p}_{f}^{-}, \overline{p}_{f}^{-}] \end{split}$$

interval for the lower bound, exact computation, interval for the upper bound, exact computation,

interval for the lower bound, interval arithmetics, interval for the upper bound, interval arithmetics.

 $I_f^+ = [\underline{p}_f^+, \overline{p}_f^+]$

Computation of the bounds / problems

- If the intervals $I_{F_i} = [\underline{P}(F_i), \overline{P}(F_i)]$ are inserted into the formulas for the lower and upper system reliability bounds, upper bounds are overestimated and lower bounds are underestimated.
- Since the modes of failure share input variables X_i, there are interactions between the intervals I_{Fi}, i = 1,...,m.
- By treating each interval separately, a repeated variable affecting two intervals is treated as if it were two different variables.
- The set of the probabilities of failure

$$S = \{(P(F_1), \ldots, P(F_m)) : P \in \mathcal{M}\}$$

is a subset of the Cartesian product of the failure probability intervals

$$S_{\Box} = I_{F_1} \times I_{F_2} \times \cdots \times I_{F_m}.$$

Exact bounds

$$\underline{p}_{f,\mathrm{ex}}^{-} = \min\left\{\max_{i=1,\ldots,m} P(F_i): (P(F_1),\ldots,P(F_m)) \in S\right\},\$$
$$\overline{p}_{f,\mathrm{ex}}^{-} = \max\left\{\max_{i=1,\ldots,m} P(F_i): (P(F_1),\ldots,P(F_m)) \in S\right\},\$$

$$\underline{p}_{f,\text{ex}}^{+} = \min\left\{\min(\sum_{i=1}^{m} P(F_i), 1) : (P(F_1), \dots, P(F_m)) \in S\right\},\$$
$$\overline{p}_{f,\text{ex}}^{+} = \max\left\{\min(\sum_{i=1}^{m} P(F_i), 1) : (P(F_1), \dots, P(F_m)) \in S\right\}.$$

 In general, we have to solve two min-max optimization problems on the modes' probabilities of failure.

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

Approximate bounds

• Replacing S by S_{\Box} leads to interval arithmetics and to the formulas

$$\underline{p}_{f}^{-} = \max_{i=1,\dots,m} \underline{P}(F_{i}), \qquad \overline{p}_{f}^{-} = \max_{i=1,\dots,m} \overline{P}(F_{i}),$$
$$\underline{p}_{f}^{+} = \min\left(\sum_{i=1}^{m} \underline{P}(F_{i}), 1\right), \qquad \overline{p}_{f}^{+} = \min\left(\sum_{i=1}^{m} \overline{P}(F_{i}), 1\right)$$

- Outer approximations: $I_{f,\text{ex}}^- \subseteq I_f^- = [\underline{p}_f^-, \overline{p}_f^-], \ I_{f,\text{ex}}^+ \subseteq I_f^+ = [\underline{p}_f^+, \overline{p}_f^+].$
- Only for the more or less useless upper bound of the lower bound we have $\underline{p}_{f}^{-} = \underline{p}_{f,ex}^{-}$, because interactions do not play a role in the calculation of $\max(\max(\cdot))$.

 In the following, we will also use the notation p⁻_f for the lower bound <u>p</u>⁻_f of the interval [<u>p</u>⁻_f, <u>p</u>⁻_f], and p⁺_f for <u>p</u>⁺_f.

Conditions leading to exact bounds

- "Exact bounds" does not refer to the probability of failure for the system $I_f = [\underline{p}_f, \overline{p}_f]$. It refers to the exact intervals $I_{f,\text{ex}}^-$ and $I_{f,\text{ex}}^+$.
- In order to calculate the intervals I[−]_{f,ex} and I⁺_{f,ex} it is not required that S = S_□. It is sufficient to have

$$(\underline{P}(F_1),\ldots,\underline{P}(F_m)) \in S$$
 and $(\overline{P}(F_1),\ldots,\overline{P}(F_m)) \in S$,

because these are the only values used in the above formulas.

• If credal sets are generated by random sets and if the limit state functions g_i are monotonic always in the same direction, then the above holds, because all $\underline{P}(F_i)$ and all $\overline{P}(F_i)$ can be obtained always at the same corners of the joint random sets.

Modelling the uncertainty of the variables

• Again
$$\mu_X = (1.0, 1.0, 1.0, 2.1, 2.0, *)^T$$
,

 $\sigma_X = (0.15, 0.15, 0.15, 0.15, 0.17, 0.80)^T.$

- The input and therefore the results are parameterized by the mean value μ_V of the vertical load *V*, $\mu_V \in [0.95, 1.15]$.
- *P*(*F*₁), *P*(*F*₂) and *P*(*F*₃) are increasing functions in μ_V, but *P*(*F*₄) is a decreasing function of μ_V.

Failure probabilities $P(F_1)$, $P(F_2)$, $P(F_3)$, $P(F_4)$ as functions of μ_V

Images of [0.95, 1.15] under monotonic $P(F_1)$, $P(F_2)$, $P(F_3)$, $P(F_4)$

 $P(F_1) \in [\underline{P}(F_1), \overline{P}(F_1)] = [2.64662 \cdot 10^{-6}, 7.17076 \cdot 10^{-6}]$ $P(F_2) \in [\underline{P}(F_2), \overline{P}(F_2)] = [1.21401 \cdot 10^{-6}, 3.61337 \cdot 10^{-6}]$ $P(F_3) \in [\underline{P}(F_3), \overline{P}(F_3)] = [6.72815 \cdot 10^{-12}, 6.72815 \cdot 10^{-12}]$ $P(F_4) \in [\underline{P}(F_4), \overline{P}(F_4)] = [4.38048 \cdot 10^{-6}, 1.16099 \cdot 10^{-5}]$

Approximate bounds p_f^- and p_f^+ using interval arithmetics

Inserting the above intervals into p_f^- and p_f^+ :

$$I_{f}^{-} = [4.38048 \cdot 10^{-6} , 1.16099 \cdot 10^{-5}] \supset I_{f,\text{ex}}^{-}$$
$$I_{f}^{+} = [8.24112 \cdot 10^{-6} , 2.23941 \cdot 10^{-5}] \supset I_{f,\text{ex}}^{+}$$

Exact bounds p_f^- and p_f^+ , images of [0.95, 1.15] under p_f^- and p_f^+

We calculate the exact bounds by computing the minimum and maximum of p_f^- and p_f^+ as functions of $\mu_V \in [0.95, 1.15]$:

$$I_{f,\text{ex}}^{-} = [\underline{p}_{f,\text{ex}}^{-}, \overline{p}_{f,\text{ex}}^{-}] = [5.62629 \cdot 10^{-6} , 1.16099 \cdot 10^{-5}]$$
$$I_{f,\text{ex}}^{+} = [\underline{p}_{f,\text{ex}}^{+}, \overline{p}_{f,\text{ex}}^{+}] = [1.36547 \cdot 10^{-5} , 1.54705 \cdot 10^{-5}]$$

p_f^- and p_f^+ as functions of μ_V , non-linear, non-monotonic x 10⁻⁵ 1.4 2 p_f 0.8 0.6 0.95 1.051.1 1.15 μv Thomas Fetz (Innsbruck) Credal Sets and Reliability Bounds WPMSIIP 2, Munich, 2009 19/37

Exact bounds p_f^- and p_f^+ , images of [0.95, 1.15] under p_f^- and p_f^+

We calculate the exact bounds by computing the minimum and maximum of p_f^- and p_f^+ as functions of $\mu_V \in [0.95, 1.15]$:

$$I_{f,\text{ex}}^{-} = [\underline{p}_{f,\text{ex}}^{-}, \overline{p}_{f,\text{ex}}^{-}] = [5.62629 \cdot 10^{-6} , 1.16099 \cdot 10^{-5}]$$
$$I_{f,\text{ex}}^{+} = [\underline{p}_{f,\text{ex}}^{+}, \overline{p}_{f,\text{ex}}^{+}] = [1.36547 \cdot 10^{-5} , 1.54705 \cdot 10^{-5}]$$

Approximate bounds

$$\begin{split} I_f^- &= [4.38048 \cdot 10^{-6} \ , \ 1.16099 \cdot 10^{-5} \] \\ I_f^+ &= [8.24112 \cdot 10^{-6} \ , \ 2.23941 \cdot 10^{-5} \]. \end{split}$$

Modelling the uncertainty of the variables

$$\mu_{M_1} = \mu_{M_2} = \mu_{M_3} \in [0.75, 1.05], \ \mu_{M_4} \in [1.75, 2.2],$$

 $H \in [1.9, 2.5], \ V \in [0.75, 1.25] \text{ and}$
 $\sigma_X = (0.15, 0.15, 0.15, 0.15, 0.17, 0.80)^T.$

Computation of $\underline{P}(F_i)$ and $\overline{P}(F_i)$

•
$$\underline{P}(F_i) = F(0; \mathbf{A}_{i,*} \, \mu_X^{i+}, \mathbf{B}_{i,*} \, \sigma_X^2), \quad \overline{P}(F_i) = F(0; \mathbf{A}_{i,*} \, \mu_X^{i-}, \mathbf{B}_{i,*} \, \sigma_X^2)$$

$$\mu_{X_j}^{i-} = egin{cases} \mu_{X_j}^L & \mathbf{A}_{ij} > 0 \ \mu_{X_j}^R & \mathbf{A}_{ij} < 0 \ \end{pmatrix}, \qquad \mu_{X_j}^{i+} = egin{cases} \mu_{X_j}^L & \mathbf{A}_{ij} < 0 \ \mu_{X_j}^R & \mathbf{A}_{ij} > 0, \ \end{pmatrix}$$

if we assume (as in our example) that all mean values are positive. • There are also rules for $\sigma_{X_i} \in [\sigma_{X_i}^L, \sigma_{X_i}^R]$.

Results

•
$$P(F_1) \in [\underline{P}(F_1), \overline{P}(F_1)] = [7.64097 \cdot 10^{-8}, 1.60766 \cdot 10^{-2}]$$

 $P(F_2) \in [\underline{P}(F_2), \overline{P}(F_2)] = [8.69605 \cdot 10^{-8}, 8.92689 \cdot 10^{-4}]$
 $P(F_3) \in [\underline{P}(F_3), \overline{P}(F_3)] = [5.38242 \cdot 10^{-15}, 7.85493 \cdot 10^{-3}]$
 $P(F_4) \in [\underline{P}(F_4), \overline{P}(F_4)] = [4.15900 \cdot 10^{-7}, 1.60766 \cdot 10^{-2}].$

Approximate system reliability bounds:

$$p_f^- = 4.15900 \cdot 10^{-7}$$

 $p_f^+ = 4.09007 \cdot 10^{-2}$

Truncated normal distributions

The cumulative distribution function

$$F_{\text{trunc}}(x;\mu,\sigma^2) = \frac{F(x;\mu,\sigma^2) - F(x^L;\mu,\sigma^2)}{F(x^R;\mu,\sigma^2) - F(x^L;\mu,\sigma^2)}$$

is the CDF which we get if a normal distribution with parameters μ , σ and CDF $F(x; \mu, \sigma^2)$ is truncated to the interval $[x^L, x^R]$.

• Start with lower and upper CDFs, \underline{F}_i and \overline{F}_i , for each variable X_i :

$$\underline{F}_i(x) = F(x; \mu_{X_i}^R, \sigma_{X_i}^2), \qquad \overline{F}_i(x) = F(x; \mu_{X_i}^L, \sigma_{X_i}^2).$$

(Means and variances from the previsious example)

• Replace \underline{F}_i and \overline{F}_i by the CDF of the corresponding truncated normal distributions.

Truncation intervals for the variables

variable	interval for truncation	interval for trunction
	of the lower CDF	of the upper CDF
M_1	[0.25, 1.65]	[0.25, 1.65]
M_2	$[0.25, \ 1.65]$	[0.25, 1.65]
M_3	$[0.25, \ 1.65]$	[0.25, 1.65]
M_4	[1.15, 2.80]	[1.15, 2.80]
Н	[1.30, 2.90]	[1.30, 2.90]
V	$[0.00, \ 3.00]$	$[0.00, \ 3.50]$

• Approximation steps:

Set of truncated normal distributions $\rightarrow p$ -box \rightarrow random set. (Outer discretization method ODM, Fulvio Tonon)

Numerical Example, Input (Coarse Discretization)

Upper and lower CDFs of truncated normal distributions and random sets obtained by outer discretization for M_i , H, V

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

Computation of the images of the joint focal sets

 If random set independence is assumed, we have to compute the images

 $B_i^j = [\underline{b}_i^j, \overline{b}_i^j] = g_i(A^j)$ and $B_{syst}^j = [\underline{b}_{syst}^j, \overline{b}_{syst}^j] = g_{syst}(A^j)$ of all $4^6 = 4096$ joint random sets A^j .

- Mode's limit states g_i: Very easy because of monotonicity.
- Lower bounds, <u>b</u>^j_{syst}, which are needed to calculate the upper probability:

$$\underline{b}_{syst}^{j} = \min_{x \in A^{j}} g_{syst}(x) = \min_{x \in A^{j}} \min_{i} g_{i}(x) = \min_{i} \min_{x \in A^{j}} g_{i}(x) = \min_{i} \underline{b}_{i}^{j}.$$

• Upper bounds \overline{b}_{syst}^{j} which are needed to calculate the lower probability:

$$\overline{b}_{\text{syst}}^{j} = \max_{x \in A^{j}} g_{\text{syst}}(x) = \max_{x \in A^{j}} \min_{i} g_{i}(x) \le \min_{i} \max_{x \in A^{j}} g_{i}(x) = \min_{i} \overline{b}_{i}^{j}.$$

Computation of the upper bounds \overline{b}'_{syst}

By solving the linear optimization problem

maximize y

subject to

$$g_i(x) \ge y$$
 $i = 1, \dots, m$
 $x_k \in I_k$ $k = 1, \dots, n$

where $I_1 \times \cdots \times I_m = A^j$ is the joint focal set generated by the Cartesian product of marginal focal sets (intervals) I_k .

Numerical Example, Output (Coarse Discretization)

Images of the joint focal sets and *p*-boxes for the single modes

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

WPMSIIP 2, Munich, 2009 27 / 37

Numerical Example, Output (Coarse Discretization)

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

WPMSIIP 2, Munich, 2009 27 / 37

Results

The probabilities of failure for the single failure modes:

$$P(F_1) \in [0, 2.319 \cdot 10^{-1}]$$

$$P(F_2) \in [0, 4.410 \cdot 10^{-2}]$$

$$P(F_3) \in [0, 2.021 \cdot 10^{-1}]$$

$$P(F_4) \in [0, 4.938 \cdot 10^{-2}]$$

• Approximate system reliability bounds:

$$p_f^- = 0, \quad p_f^+ = 5.27480 \cdot 10^{-1}$$

• The system's probability of failure obtained using g_{syst}:

$$p_f \in [0, 3.65221 \cdot 10^{-1}].$$

Monte-Carlo

- Using only four focal sets leads to a very rough approximation of the *p*-boxes.
- If we use a finer discretization, e.g., 10 focal sets, we would get a better approximation, but then we have to compute 10^6 images of joint focal sets. The idea is now not to consider all 10^6 joint focal sets, but only, say, N = 10,000 randomly chosen sets.
- Notice: Probability bounds are no longer automatically verified.
- Algorithm:
 - For each variable x_k choose N focal sets according to the weights m_k .
 - The *j*-th joint focal set is the Cartesian product of all *j*-th chosen marginal focal sets, j = 1, ..., N.
 - The weights of these joint focal sets are 1/N.

Numerical Example, Input, (Fine Discretization)

Upper and lower CDFs of truncated normal distributions and random sets obtained by outer discretization for M_i , H, V

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

31/37

Numerical Example, Output (Fine Discretization, Monte-Carlo)

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

WPMSIIP 2, Munich, 2009 32 / 37

Numerical Example, Output (Fine Discretization, Monte-Carlo)

Thomas Fetz (Innsbruck)

Credal Sets and Reliability Bounds ...

Results for Monte-Carlo Simulation, N = 10,000

Probabilities of failure for the single failure modes		
Discretization: 10 focal sets	10,000 focal sets	
$P(F_1) \in [0, \ 1.251 \cdot 10^{-1} \]$ $P(F_2) \in [0, \ 2.670 \cdot 10^{-2} \]$ $P(F_3) \in [0, \ 9.680 \cdot 10^{-2} \]$ $P(F_4) \in [0, \ 1.710 \cdot 10^{-2} \]$	$P(F_1) \in [0, 1.45 \cdot 10^{-2}]$ $P(F_2) \in [0, 3.00 \cdot 10^{-4}]$ $P(F_3) \in [0, 6.30 \cdot 10^{-3}]$ $P(F_4) \in [0, 1.00 \cdot 10^{-4}]$	
The system reliability bounds		
$p_f^- = 0 \ p_f^+ = 2.657 \cdot 10^{-1}$	$p_f^- = 0 \ p_f^+ = 2.12 \cdot 10^{-2}$	
The system's probability of failure obtained using g_{syst}		
$p_f \in [0, \ 2.042 \cdot 10^{-1} \]$	$p_f \in [0, 2.04 \cdot 10^{-2}]$	

Recalling the main reason for using system reliability bounds

- Linear limit state functions g_1, \ldots, g_m for the failure modes.
- Variables *X*₁,...,*X*_n normaly distributed.
- \rightarrow Easy computation of $P(F_1), \ldots, P(F_m)$.
 - Non-linear and non-monotonic limit state function *g*_{syst}.
- \rightarrow High computional effort (compared to the failure modes).

Linear g_i , monotonicity always in the same direction

- Parameterized probabilities (normal distribution):
 - Single mode: Low effort.
 - System (non-linear): High effort.
 - \rightarrow Use system reliability bounds (exact bounds).
- Random sets, p-boxes:
 - Single mode: Low effort.
 - System (monotonic): Low effort.
 - Random set independence = strong independence.
 - \rightarrow Do not use system reliability bounds.

Linear g_i , monotonicity not always in the same direction

- Parameterized probabilities (normal distribution):
 - Single mode: Low effort.
 - System (non-linear): High effort.
 - \rightarrow Use system reliability bounds (approximate bounds only).
- Random sets, p-boxes:
 - Single mode: Low effort.
 - System (non-monotonic)
 - Upper probability: Low effort.
 - Lower probability: More expensive (linear program).
 - Random set independence \neq strong independence.
 - Approximate bounds only.