Outline		Finding the maximum entropy distribution for NPI	
		0000 0000 0000	

CLASSIFICATION TREES WITH NPI

REBECCA BAKER

Department of Mathematical Sciences, University of Durham

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI	
		0000 0000 0000	

1 The multinomial NPI model

- Motivation
- The probability wheel representation
- 2 Classification
 - Classification trees
 - Weka software
- 3 Finding the maximum entropy distribution for NPI
 - The approximate algorithm
 - The exact algorithm
 - Comparison of NPI-M and A-NPI-M

4 Future work

・ロト・部ト・モト・モト モニのへの

REBECCA BAKER

Motivation

The multinomial NPI model

Model for learning from multinomial data

- inferences about a future observation
- in form of a probability interval
- based entirely on past observations

Have observed $Y_1, ..., Y_n$, want to find out about Y_{n+1}

K categories in total: $c_1, ..., c_K$

Event of interest is $(Y_{n+1} \in E)$ where *E* is a subset of the *K* categories

REBECCA BAKER

Outline	The multinomial NPI model	Finding the maximum entropy distribution for NPI	
	0 ●00		

The probability wheel representation

The probability wheel representation

Represent data on a probability wheel

• Y_{n+1} has probability $\frac{1}{n}$ of being in each slice

- Slice bordered by two observations in the same category is assigned to this category
- Slice bordered by two observations in different categories may be assigned to any available category

Note: Each category may only be represented by a single segment of the wheel.

REBECCA BAKER

Outline	The multinomial NPI model	Finding the maximum entropy distribution for NPI	
	o o●o	0000 0000 0000	

The probability wheel representation

Deriving lower probabilities

Possible categories are blue (B), green (G), red (R), yellow (Y), pink (P) and orange (O)
 Event E = {B, G, P}

REBECCA BAKER

Outline	The multinomial NPI model	Finding the maximum entropy distribution for NPI	
	° 00●	0000 0000 0000	

The probability wheel representation

Deriving upper probabilities

Possible categories are blue (B), green (G), red (R), yellow (Y), pink (P) and orange (O)
 Event E = {B, G, P}

$$\overline{P}(Y_{n+1} \in E) = 1$$

REBECCA BAKER

Outline	Classification	Finding the maximum entropy distribution for NPI	
	• 0 00000	0000 0000 0000	

Classification trees

Classification trees

Hierarchical structure which defines classification rules

Attributes at the nodesCategory labels at the leaves

REBECCA BAKER

Outline	Classification ○● ○○○○○	Finding the maximum entropy distribution for NPI 0000 00000 0000	

Classification trees

Building trees using imprecise probabilities

At each node:

- We need to select an attribute for splitting
- The generalised Shannon entropy measure S is employed, using the maximum entropy distribution p_{maxE}:

$$\mathcal{S} = -\sum_{j=1}^{K} p_{maxE}(c_j) \log p_{maxE}(c_j)$$

The information gain is measured for each attributeThe most informative attribute is selected for splitting

REBECCA BAKER

The software includes tools for pre-processing data

REBECCA BAKE

Outline	Classification	Finding the maximum entropy distribution for NPI	
	00 0●000	0000 0000 0000	

Yeka Explorer Preprocess Classify Cluster Associate Select attributes Visualize					
Open file Open URL Open DB	Gene	rate	Undo	Edit	Save
Filter Choose MultiFilter -F "weka.filters.unsupervised.attribute.ReplaceMissin	gValues " -F "weka.filti	ers.supervised.attribut	e.Discretize -R first-last*		Apply
Current relation Relation: nursery-weka. filters.unsupervised.attribute.ReplaceMissingValues- Instances: 12960 Attributes: 9	weka.filters.supe	Selected attribute Name: parents Missing: 0 (0%)	Distinct:	Tyj 3 Uniqi	pe: Nominal ue: 0 (0%)
Attributes		Label		Count	
		usual		4320	
All None Invert	Pattern	pretentious		4320	
		great_pret		4320	
2 has_nurs 3 form 4 children		Class: class (Nom)			Visualize A
5 housing 6 finance 7 social		4320	4320		320
8 health 9 dass					
Remove					
tatus JK					Log 🛷
🖌 start 👖 TeXnicCenter - [🍞 weka-3.5.7 - Ne 🦉	2 Java(TM) Pla	- 📆 slides4munich.p	EN GOOD	e q = = (5"	S 1 2 0 5 10:

Figure: Weka Explorer: Pre-process tab

REBECCA BAKER

Outline	Classification ○○ ○○●○○	Finding the maximum entropy distribution for NPI 0000 00000 0000	

🍽 Weka Explorer		- 6 🛛
Preprocess Classify Cluster Associate Se	elect attributes Visualize	
Classifier Classify instances		
Choose NPIDecisionTrees -5M NPI_	M	
Test options	Classifier output	
O Use training set		~
O Sumpled best cat	Time taken to build model: 0.45 seconds	-
	and Stratified cross-validation and	
Cross-validation Folds 10	=== Summary ===	
O Percentage split % 66		
More options	Correctly Classified Instances 12332 95.1543 %	
	Incorrectly classified instances 628 4.845/ %	
(Nom) dass 🛛 👻	Mean absolute error 0.0264	
Start Stan	Root mean squared error 0.1198	
	Relative absolute error 9.6734 %	
Result list (right-dick for options)	Root relative squared error 32.421 %	
11:50:00 - trees.NPIDecisionTrees		
	Detailed Accuracy By Class	
	TP Para EP Para Provision Peopli E Mangura POC Area Class	
	1 0 1 1 1 1 not recom	
	0 0 0 0 0 0.498 recommend	
	0.259 0.002 0.78 0.259 0.389 0.971 very_recom	~
		>
Status		
ок	Log	×0
🔠 start 🔳 TeXnicCen	🗊 weka+3.5 🔀 2 Java(T 🔁 skdes4mu 🦉 untitled 🛛 🛛 🔀 🖓 🗛 🤄	5 💭 16:11

Figure: Weka Explorer: Classify tab

REBECCA BAKER

Outline	Classification ○○ ○○○●○	Finding the maximum entropy distribution for NPI 0000 00000 0000	

🍽 Weka Experiment Environment	
Setup Run Analyse	
Experiment Configuration Mode:	Simple Advanced
Open	Save New
Results Destination	
ARFF file V Filename: /usr/local/common/user_packages/netbeans/experiments/A-NPI-Mver	rsusNPI-M.arff Browse
Experiment Type	Iteration Control
Cross-validation	Number of repetitions: 10
Number of folds: 10	 Data sets first
Classification CRegression	O Algorithms first
Datasets	Algorithms
Add new Edit selected Delete selected	Add new Edit selected Delete selected
Use relative paths	E FilteredClassifier -F "weka, filters, MultiFilter -F \"weka, filters, unsupervised, attribute, ReplaceMissing
Use local common luser _ padages (netbeans experiments nominal anneal, afff Use local (common luser _ padages) (netbeans experiments nominal annih yims, afff Use local (common luser _ padages) (netbeans experiments horminal lucal local, afff Use local (common luser padages) (netbeans experiments horminal lucal local, afff Use local (common luser padages) (netbeans experiments horminal lucal local, afff Use local (common luser padages) (netbeans) experiments horminal lucal local, afff Use local (common luser padages) (netbeans) experiments horminal lucal local, afff Use local (common luser_ padages) (netbeans) experiments horminal link local loca	E_FilteredClassifier + Twela.filters.MultiFilter + Twela.filters.unsupervised.attribute.ReplaceMissing
Uusr Vocal (common Juser, packages ine beans (experiments inominal) roges _version 2. and	< · · · · · · · · · · · · · · · · · · ·
Up Down	Load options Up Down
Ne	lotes
🛃 Start 🚺 TeXnicCen 🌒 weka-3.5 🚳 3 Java(T 🔹 🔝 skides4mu.	🦉 untited EN <u>Console</u> 🔍 * 🗆 🌾 🔊 🍕 🏵 😓 💭 16:16

Figure: Weka Experimenter: Setup tab

REBECCA BAKER

Outline	Classification ○○ ○○○○●	Finding the maximum entropy distribution for NPI 0000 00000	

📚 Weka Experiment	t Environment						
Setup Run Analyse							
Source							
Got 8000 results						File Database Experiment	
Configure test		Test output					
1000 C				11152			
Testing with	Paired T-Tester (correc 💙	Tester: weka	.experiment.Pai:	redCorrect	edTTester		
Row	Select	Datasets: 40	ent_correct				
		Resultsets: 2					
Column	Select	Confidence: 0.05	(two tailed)				
		Sorted by: -					
Comparison field	Percent_correct	Date: 09/0	9/09 16:17				
Significance	0.05						
Sorting (asc.) by	<default></default>	Dataset	(1) ms	eta.E_F	(2) meta.		
1.000							
Test base	Select	anneal	(100)	99.09 1	99.09		
Displayed Columns	Select	audiology	(100)	85.04	85.04		
chipita yea conanna		autos	(100)	78.45	78.25		
Show std. deviations		balance-scale	(100)	69.59	69.59		
		bridges-version1	weka.fil(100)	67.74	67.74		
Output Format	Select	bridges-version2	-weka.fil(100)	64.15	63.87		
		car	(100)	90.13	90.13		
Perform test	Save output	cmc	(100)	48.98	48.98		
Regultist		dermatology	(100)	93.43	93.46		
16.17.50		flogg	(100)	50.19 1	50.19		
< m	reet - metone_rinteredelassii	< C	(100)	03112		3	
					2		<u> </u>
🛃 start 🛛 🔳	TeXnicCen 👔 weka-3.5	🚳 3 Java(T	📆 sides4mu	🦉 untitled	i EN	Codolel 🔍 📲 🖉 🖉 🖉 🌑 😓 🛄 💵	5:18

Figure: Weka Experimenter: Analyse tab

REBECCA BAKER

	Outline			Finding the maximum entropy distribution for NPI ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
--	---------	--	--	--	--

The approximate algorithm, A-NPI-M

Based on an algorithm by Abellan and Moral for finding the maximum entropy distribution within a credal set

NPI gives set of probability intervals $\mathcal{L} = [I_i, u_i] = [\underline{P}(c_i), \overline{P}(c_i)]$

These are F-probabilities

 The probability of any event can be defined in terms of these single-category probabilities

■ The credal set associated with the NPI lower and upper probabilities can be expressed by the set Ł

REBECCA BAKER

Outline The mul o ooo		ation Finding the maximum entropy distribution for t ○●○○ ○○○○ ○○○○	NPI Future w
-----------------------------	--	--	--------------

The approximate algorithm, A-NPI-M

The algorithm A-NPI-M is applied to the credal set Ł

- For each category, $p(c_j)$ is initially set to I_j
- The remaining probability mass is shared evenly between categories, beginning with those observed least often
- At each step, probabilities are increased by ¹/_n until they reach the value u_j or until all probability mass has been distributed

The resulting distribution is used to build classification trees

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI	
		0000 0000 0000	

Comparison to other methods

Classification trees using A-NPI-M were compared to 4 other methods:

- Trees using IDM
- 2 Trees with precise probabilities and IG split criterion
- 3 Trees with precise probabilities and IGR split criterion
- More complex procedure involving pruning (J48)

- Experiment was carried out on 40 data sets
- Classifiers were compared pairwise
- Numbers of correct classifications were compared

Outline		Finding the maximum entropy distribution for NPI ○○○● ○○○○ ○○○○	

Results

The performance of A-NPI-M is similar to that of the IDM
A-NPI-M performs better than the other classifiers here

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI ○○○○ ●○○○ ○○○○	
The exact	algorithm		
Proh			

The A-NPI-M algorithm finds the maximum entropy distribution in the credal set Ł

Some distributions in this set are not compatible with the probability wheel model

- < ロ > < 個 > < 目 > < 目 > 「 目 」 の へ ()

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI	
The exact	algorithm		

Example

Possible categories {*B*, *P*, *R*, *Y*, *O*} with observation counts {4, 5, 0, 0, 0}

The credal set \underline{k} is $\left\{ \begin{bmatrix} 3\\9\\9\end{bmatrix}; \begin{bmatrix} 4\\9\\9\end{bmatrix}; \begin{bmatrix} 0\\9\end{bmatrix}; \begin{bmatrix} 0\\1\\9\end{bmatrix}; \begin{bmatrix} 0\\1\\9\\1\\9\end{bmatrix}; \begin{bmatrix} 0\\1\\9\\1\\9\end{bmatrix}; \begin{bmatrix} 0\\1\\9\\1\\9\end{bmatrix}; \begin{bmatrix} 0\\1\\9\\1\\9\end{bmatrix}; \begin{bmatrix}$

• A-NPI-M gives the distribution $\left\{\frac{3}{9}, \frac{4}{9}, \frac{2}{27}, \frac{2}{27}, \frac{2}{27}\right\}$

There is no valid configuration of the wheel that corresponds to this distribution

REBECCA BAKER

Outline The multinor	niai NPI model Glassification	Finding the maximum entropy distribution for NPI	Future work

The exact algorithm

The exact algorithm, NPI-M

The exact algorithm finds the maximum entropy distribution consistent with the probability wheel model

- For each category, $p(c_j)$ is initially set to l_j
- The remaining probability mass is shared as evenly as possible between categories, beginning with those observed least often
- At each step, probabilities are increased by ¹/_n until they reach the value u_j or until all probability mass has been distributed

This leads to a distribution which is as uniform as possible but still corresponds to a valid configuration of the wheel

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI ○○○○ ○○○● ○○○○	

The exact algorithm

Example

Possible categories {*B*, *P*, *R*, *Y*, *O*} with observation counts {4, 5, 0, 0, 0}

NPI-M gives the distribution $\{\frac{3}{9}, \frac{4}{9}, \frac{1}{9}, \frac{1}{18}, \frac{1}{18}\}$

This is as close to uniform as possible while still corresponding to a valid configuration of the wheel

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI	
		0000 0000 ●000	

Comparison of NPI-M and A-NPI-M

Comparison of NPI-M and A-NPI-M

We implemented NPI-M for building classification trees in Weka

- Comparison of NPI-M and A-NPI-M was carried out on 40 data sets
- Numbers of correct classifications were compared

REBECCA BAKER

Outline			Finding the maximum entropy distribution for NPI	
			0000	

Comparison of NPI-M and A-NPI-N

Results

Percentage of correct classifications for each method:

Dataset	(1)	(2)
anneal	99.09	99.09
arrhythmia	67.88	68.06
audiology	85.04	85.04
autos	78.45	78.25
balance-scale	69.59	69.59
bridges-version1	67.74	67.74
bridges-version2	64.15	63.87
car	90.13	90.13
cmc	48.98	48.98
dermatology	93.43	93.46
ecoli	80.19	80.19
flags	59.12	59.27
hypothyroid	99.33	99.33
ins	93,40	93.40
letter	78.77	78.77
lung-cancer	41.33	41.33
lymphography	73.68	73.68
mfeat-factors	81 71	81.68
mfeat-fourier	68.90	68.92
mfeat-karbunen	73.14	73.15
mfeat-morphological	69.78	69.78
mfeat-nixel	79.99	79.92
mfeat-zernike	64 19	64.24
numbery	95.15	94.99
optimite	78.95	78.98
nage-blocke	96.08	96.10
nenticite	89.37	89.37
portoparative-patient-data	71 11	71 11
primany-humor	39.21	20.48
sagmant	94.18	94.20
embern	03.20	93.35
enactromatar	43.32	43.33
enlica	93.25	93.25
enonna	94.48	94.48
taa	46.78	46.78
vahicle	60.70	69.79
umaal	75.92	75.95
waveform	73.99	73.99
wine	92.02	92.02
700	95.52	95.52
200	55.55	

O,
 statistically significant improvement or degradation

Peformance is not significantly different on most data sets
 NPI-M performs significantly better on 'nursery' data set

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI ○○○○ ○○○○ ○○●○	
Comparis	on of NPI-M and A-NPI-M		
N I	a mu data a at		

Nursery data set

Data set taken from applications for places at a private nursery school

- Applicants classified in terms of how likely they are to be accepted
- 5 categories: *c*₁, *c*₂, *c*₃, *c*₄, *c*₅
- 8 attribute variables

Outline		Finding the maximum entropy distribution for NPI ○○○○ ○○○○ ○○○○	
Compariso	on of NPI-M and A-NPI-M		

Nursery data set

Most informative attribute is 'health'

- At '*', counts in $\{c_1, c_2, c_3, c_4, c_5\}$ are $\{0, 0, 0, 1854, 2466\}$
 - A-NPI-M and NPI-M both give $p_{maxE}(c_4) = \frac{1853}{4320}$ and $p_{maxE}(c_5) = \frac{2465}{4320}$
 - A-NPI-M gives equal probability $\frac{1}{6480}$ to c_1 , c_2 and c_3
 - NPI-M gives probabilities $\{\frac{1}{4320}, \frac{1}{8640}, \frac{1}{8640}\}$ to $\{c_1, c_2, c_3\}$

In the branch of the tree beginning at '*', A-NPI-M and NPI-M will always give different distributions

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI	Future work
		0000 0000 0000	

Future work

Investigation into the use of the maximum entropy algorithm for NPI with subcategories

Study of classifiers which use NPI with various different uncertainty measures

- イロト イボト イモト 「臣」 のくび

REBECCA BAKER

Outline		Finding the maximum entropy distribution for NPI	Future work
		0000 0000 0000	

References

- Abellán, J. and Moral, S. (2003) Maximum entropy for credal sets International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(5), 587-597.
- Augustin, T. and Coolen, F.P.A. (2004) Nonparametric predictive inference and interval probability *Journal of Statistical Planning* and Inference, **124**, 251-272.
- Coolen, F.P.A. and Augustin, T. (2005) Learning from multinomial data: a nonparametric predictive alternative to the Imprecise Dirichlet Model ISIPTA '05, 125-134.
- Coolen, F.P.A. (2006) On nonparametric predictive inference and objective Bayesianism. *Journal of Logic, Language and Information*, **15**, 21-47.
- Coolen, F.P.A. and Augustin, T. (2009) A nonparametric predictive alternative to the Imprecise Dirichlet Model: the case of a known number of categories *International Journal of Approximate Reasoning*, **50**, 217-230.

REBECCA BAKER