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Motivation

Model for learning from multinomial data

inferences about a future observation
in form of a probability interval
based entirely on past observations

Have observed Yi, ..., Y,, want to find out about Y, 4
K categories in total: ¢4, ..., cx

Event of interest is (Y,.1 € E) where E is a subset of the K
categories
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The probability wheel representation

Represent data on a probability wheel
Yr+1 has probability }, of being in each slice

Y2

14

Yn
Yi

Slice bordered by two observations in the same category is
assigned to this category
Slice bordered by two observations in different categories
may be assigned to any available category
Note: Each category may only be represented by a single
segment of the wheel.
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The probability wheel representation

Possible categories are blue (B), green (G), red (R), yellow
(YY), pink (P) and orange (O)
Event E = {B, G, P}

P(Yni1 € E)= %
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The probability wheel representation

Possible categories are blue (B), green (G), red (R), yellow
(YY), pink (P) and orange (O)
Event E = {B, G, P}

P(Yp1 € E)=1
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Classification trees

Hierarchical structure which defines classification rules

Attributes at the nodes
Category labels at the leaves
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Classification trees

At each node:

We need to select an attribute for splitting
The generalised Shannon entropy measure S is employed,
using the maximum entropy distribution ppaxe:
K
S=—) Pmaxe(¢) 109 Prmaxe(C)
j=1

The information gain is measured for each attribute
The most informative attribute is selected for splitting
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Weka software

|
Weka software can be used to build classification trees

One classifier can be analysed in detalil
Multiple classifiers can be compared in a number of ways

The software includes tools for pre-processing data

REBECCA BAKER
CLASSIFICATION TREES WITH NPI



Outline The multinomial NPl model

Weka software

Classification

Finding the maximum entropy distribution for NPI

Future work

Weka Explorer
Preprocess | Classify | Cluster | Assodiate | Select attrbutes | visualize|
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Weka software

Weka Explorer

| Preprocess | Classify | Cluster | Assodate | Select atiributes | Visuaiize |
Cassifier
||_Choose |NPIDecisionTrees -5M NPI_M

Test options Classifier output

(© Use training set
Time taken to build model: 0.45 seconds

) Suppiied test set

@ Crossvaldaton Fods 10| | | = Seretified cross-validation ==
== Summary ==

() Percentage spit b

Correctly Classified Instances 12332

95.1543 &
Incorrectly Classified Instances

628 1.8457 &
g ooz
iom) diass v

0.0262
— - Root mean squared error 01198
= Relative absolute exror 9.6734 %
Resultlst right-cick for options) Root relative squared error 32.421 %
. Total Number of Instances 12960

== Detailed Accuracy By Class —=

TP Rate FP Rate Precision Recall F-Measure ROC Area

Class
1 [ 3 1 1 1 not_recom.
o o o o o 0.498 recommend =
0.25% 0.002 0.78 0.259 0.389 0.971 very_recom
< . I | >
Status
oK

TeXnicCen,

Weka Explorer: Classify tab
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Weka software

Setup | Run | Analyse|

al NPl model Classification

[e]e]e] e}

Finding the maximum entro

ibution for NP!I Future work

Experiment Configuration Mode: (& Simple ©) Advanced

f Bpen 1( Save. ][ New ]
Results Destination
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REBECCA BAKER

Weka Experimenter: Setup tab

CLASSIFICATION TREES WITH NPI



The multinomial NPl mo Classification Finding the maximum tribution for NPI Future

Weka software

Source
Got 5000 results Datzbase...
Configure test Test output
Testing with [Paired T-Tester (correc... v k: PairedCorrectedITester 2
Percent_correct
o "
2
Column Confidence: 0.05 (two tailed) =
Sorted by: -
Comparison fild |Percent_correct v | | paze: 09/09/09 16:17
-
B — a2 | e
Testbase anneal (L00)  99.09 | 9s.09
arzhythmia (100)  67.88 | 68.06
Displayed Columns audiolagy (100)  85.04 | 85.04
autos (100) 78.45 | 78.25
Show std. deviations [ balance-scale (100)  63.59 |  68.58
bridges-versionl-veka.£il(100) 67.74 |  67.74
Output Format bridges-version2-weka.fil(L00)  64.15 |  63.87
car (100)  90.13 | 90.13
[ Fetomus d[ sweomwn | || o= (100) 48.98 | 48.98
dernatology (100) 93.43 | 93.46
Result list ecoli (100y  80.19 | 80.19
flags (100) 59.12 | 59.27 v
< I | >

Weka Experimenter: Analyse tab
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The approximate algorithm

Based on an algorithm by Abellan and Moral for finding the
maximum entropy distribution within a credal set

NPI gives set of probability intervals
L=, yl = [P(g), P(c))]
|

These are F-probabilities
The probability of any event can be defined in terms of
these single-category probabilities

The credal set associated with the NPI lower and upper
probabilities can be expressed by the set £
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The approximate algorithm

The algorithm A-NPI-M is applied to the credal set -

For each category, p(c;) is initially set to /;

The remaining probability mass is shared evenly between
categories, beginning with those observed least often

At each step, probabilities are increased by 15 until they
reach the value u; or until all probability mass has been

distributed

The resulting distribution is used to build classification trees
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The approximate algorithm

Classification trees using A-NPI-M were compared to 4 other
methods:

Trees using IDM

Trees with precise probabilities and |G split criterion
Trees with precise probabilities and IGR split criterion
More complex procedure involving pruning (J48)

Experiment was carried out on 40 data sets
Classifiers were compared pairwise
Numbers of correct classifications were compared
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The approximate algorithm

Number of Wins, Ties and Losses (W/T/L) for each classifier:

DM NPI G IGR J48
DM - 9/2719)  (18/2/20 2723 Bp
NPI | (19/2/19) - (18/2/20) (15/2/23) (17/1/22)
IG | (20/2/18) (20/2/18) - (18/3/19)  (19/1/20)
IGR | (23/2/15) (23/2/15) (19/3/18) - (21/1/18)
J48 | (22/1/17) (22/1117) (20/1/19) (18/1/21) -
W-L 15 15 ;1 -20 -8

The performance of A-NPI-M is similar to that of the IDM
A-NPI-M performs better than the other classifiers here
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The exact algorithm

The A-NPI-M algorithm finds the maximum entropy
distribution in the credal set £

Some distributions in this set are not compatible with the
probability wheel model
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The exact algorithm

Possible categories {B, P, R, Y, O} with observation
counts {4,5,0,0,0}

B B
B

B

The credal set £ is {[3, 3]; [3, §1: [0, §1; [0, 31: [0, §1}

A-NPI-M gives the distribution {3, %, 2,2 2
There is no valid configuration of the wheel that

corresponds to this distribution
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The exact algorithm

The exact algorithm finds the maximum entropy distribution
consistent with the probability wheel model

For each category, p(c;) is initially set to /;

The remaining probability mass is shared as evenly as
possible between categories, beginning with those
observed least often

At each step, probabilities are increased by 15 until they
reach the value u; or until all probability mass has been
distributed

This leads to a distribution which is as uniform as possible but
still corresponds to a valid configuration of the wheel
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The exact algorithm

Possible categories {B, P, R, Y, O} with observation
counts {4,5,0,0,0}

B B
B

B

NPI-M gives the distribution {3, 3. {, 5. 15}

This is as close to uniform as possible while still
corresponding to a valid configuration of the wheel
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Comparison of NPI-M and A-NPI-M

We implemented NPI-M for building classification trees in Weka

Comparison of NPI-M and A-NPI-M was carried out on 40
data sets

Numbers of correct classifications were compared
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Comparison of NPI-M and A-NPI-M

Percentage of correct classifications for each method:

Dataset T

bridges-version2
car

cme
dermatology
ecol

flags
hypothyroid

irs

letter
lung-cancer

mieat-factors.
mieat-fourier

SR RIBAB 2 B £

FL2IBAB2:

]
£
&

its

postoperative-patient-data

primary:umor
oybean

spectrometer

spiice

sponge

tae

vehicle

vowel

waveform

wine

200 95: 9

O, ® staustcally significant Tmprovement or degradation

Peformance is not significantly different on most data sets
NPI-M performs significantly better on ‘nursery’ data set
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Comparison of NPI-M and A-NPI-M

Data set taken from applications for places at a private nursery
school

Applicants classified in terms of how likely they are to be
accepted

5 categories: ¢y, ¢, C3, C4, Cs5
8 attribute variables
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Comparison of NPI-M and A-NPI-M

Most informative attribute is ‘health’

At ™, counts in {cy, Co, C3, C4, C5 } are {0,0,0,1854,2466}

A-NPI-M and NPI-M both give praxe(cs) = 1232 and

Pmaxe (CS) = %

A-NPI-M gives equal probability g to ¢, ¢z and c3

NPI-M gives probabilities { ;255 5ea5+ 5ag5 1 10 1C1. C2. C3}
In the branch of the tree beginning at *’, A-NPI-M and NPI-M
will always give different distributions
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Investigation into the use of the maximum entropy
algorithm for NPI with subcategories

Study of classifiers which use NPI with various different
uncertainty measures
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