Aufgabe 1

Seien A und B zwei Ereignisse und \mathbb{P} ein Wahrscheinlichkeitsmaß.

a) Zeigen Sie, dass

$$\mathbb{P}(A) \in \left[\min\{\mathbb{P}(A|B), \mathbb{P}(A|\bar{B})\} , \max\{\mathbb{P}(A|B), \mathbb{P}(A|\bar{B})\}\right]$$

gilt.

b) Zeigen Sie, dass die Ereignisse A und B stochastisch unabhängig sind, falls alle bedingten Wahrscheinlichkeiten gleich den unbedingten Wahrscheinlichkeiten und ungleich Null sind.

Aufgabe 2

Sei X eine poissonverteilte Zufallsvariable mit $X \sim P(\lambda)$, d.h. $f_X(x; \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}$, $x \in \mathbb{N}_0$, $\lambda > 0$.

- a) Berechnen Sie den Erwartungswert und Varianz von X.
- b) Berechnen Sie den Erwartungswert der Zufallsvariablen

$$Y = \frac{1}{1+X} \text{ und } Z = \frac{X}{1+X}.$$

Aufgabe 3

Betrachten Sie die Geometrische Verteilung mit Zähldichte $f(x) = pq^{k-1}$, gegeben 0

- a) Zeigen Sie daß es sich tatsächlich um ein Wahrscheinlichkeitsmaß handelt. (Hinweise: $\sum_{k=0}^\infty a^k=1/(1-a) \text{ für } |a|<1~)$
- b) Berechnen Sie die momenterzeugende Funktion M(s) mit Definitionsbereich.
- c) Berechnen Sie Erwartungswert und Varianz einer geometrisch verteilten Zufallsvariable unter Verwendung von Satz 5.11.
- d) Weisen Sie nach, daß für eine geometrisch verteilte Zufallsvariable die Eigenschaft der Gedächtnislosigkeit gilt.

Aufgabe 4

- (a) Sei X eine diskret gleichverteilte Zufallsvariable auf $\{1, \ldots, n\}$. Berechnen Sie die momenterzeugende Funktion.
- (b) Sei Y eine stetig gleichverteilte Zufallsvariable auf dem Intervall [1, n]. Berechnen Sie die momenterzeugende Funktion.